

Date d'édition: 17.12.2025

Ref: P1.8.7.4

P1.8.7.4 Vérification de l'équation de Bernoulli - Mesure avec un capteur de pression et le CASSY

Le but des deux expériences P1.8.7.3 et P1.8.7.4 est de vérifier léquation de Bernoulli.

On mesure la différence entre pression totale et pression statique en fonction de la section en ayant rajouté une rampe réduisant continuellement la section du tunnel aérodynamique le long de la direction du courant.

En admettant que la loi de la continuité soit valable, la section A offre un moyen de mesurer la vitesse v du courant par

 $v = v0 \cdot A0 / A$

v0 : vitesse du courant pour une section A0

La relation

- 1/A²

découlant de léquation de Bernoulli est vérifiée.

Équipement comprenant :

- 1 373 12 Tunnel aérodynamique
- 1 373 041 Ventilateur aspirant/refoulant
- 1 373 13 Sonde manométrique de Prandtl
- 1 373 075 Chariot de mesure pour le tunnel aérodynamique
- 1 524 005W2 Mobile-CASSY 2 WLAN
- 1 524 066 Capteur de pression S, ± 70 hPa

Catégories / Arborescence

Sciences > Physique > Expériences pour le supérieur > Mécanique > Aérodynamique et hydrodynamique > Mesures dans un tunnel aérodynamique

Options

Date d'édition: 17.12.2025

Ref: 37312

Tunnel aérodynamique pour soufflerie avec rampe de bernoulli

Veine d'essais fermée à parois latérales transparentes et plaque de fond interchangeable pour des expériences quantitatives en aérodynamique et en physique du vol avec le ventilateur aspirant/refoulant (37304).

Dispose d'une buse d'aspiration pour empêcher la formation de tourbillons et d'une buse d'évacuation à raccorder

Élément supplémentaire cunéiforme pour la plaque de fond (« rampe de Bernoulli ») conçu pour l'étude quantitative de la chute de pression causée par un étranglement.

Caractéristiques techniques :

Dimensions de la veine d'essais fermée : 15 cm x 15 cm x 50 cm

Dimensions totales: 36 cm x 42 cm x 113 cm

Masse: 6 kg

Matériel livré :

- 1 buse d'aspiration 1 diffuseur pour fixer le ventilateur aspirant/refoulant (37304)
- 1 fond plat pour les expériences en physique du vol et sur la résistance de l'air
- 1 filtre de tranquillisation pour protéger contre les impuretés aspirées et obtenir un écoulement laminaire de l'air
- 1 rampe de Bernoulli (graduée) 1 barre d'étanchéité (graduée) 1 couvercle en plastique transparent
- 1 paroi arrière (noire) avec lignes d'orientation
- 1 tige support, 12 mm de diamètre, 75 cm de long, filetée
- 1 housse de protection anti-poussière

Ref: 373041

Ventilateur aspirant/refoulant pour soufflerie Vitesse 0 à 2900 t/min - Capacité 1700 m³/h maximum

Ventilateur à réglage électronique continu de la vitesse de rotation.

Utilisation comme ventilateur refoulant avec la veine d'essais pour l'aérodynamique (373 06) ou comme ventilateur aspirant avec le tunnel aérodynamique (373 12).

Constitué d'un bloc ventilateur, d'un socle pour montage horizontal ou vertical, d'une buse étroite, d'une bille en polystyrène et alimentation.

Caractéristiques techniques :

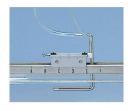
Dimensions du bloc ventilateur: 20,5 cm x 25,5 cm Ø Niveau sonore audible à une distance de 1m: max. 70dB

Connexion: 230 V/50 ... 60Hz par câble secteur

Puissance absorbée: 300 VA

SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition : 17.12.2025


Diamètre de l'ouverture de la buse: 100 mm

Diamètre de la bille: 7,5 cm

Ref: 37313

Sonde manométrique (Tube de pitot)

complément nécessaire 37310 ou 524066 pour CASSY

Pour mesurer la pression statique, la pression totale et la pression dynamique d'un gaz en écoulement. S'utilise avec le manomètre de précision (37310).

Tube double coudé dont les ouvertures (pour la sonde) sont orientées différemment.

Livré avec deux tuyaux en plastique à raccorder au manomètre.

Caractéristiques techniques : Diamètre des tuyaux : 8 mm

Dimensions de la sonde : 18 cm x 13 cm x 5 cm

Masse: 0,1 kg

Ref: 373075

Chariot pour le tunnel aérodynamique et la veine d'essai soufflerie

Avec masse marquée et crochet

Date d'édition: 17.12.2025

Ref: 524005W2

Mobile-CASSY 2 WiFi Appareil de mesure polyvalent interfaçable avec écran couleurs 3.5"

Tension +/-01V...+/-30V, Courant +/-0.03...+/-3A, 2x ports capteurs CASSY, 1 température typ K

Appareil universel portatif pour les travaux pratiques :

Grande affichage des valeurs mesurées

Reconnaissance automatique des capteurs , compatible avec tout les capteurs - CASSY et les capteurs M . Douilles de sécurité de 4 -mm pour U, I, P et E aussi bien un connecteur intégré Type K pour la mesure de la température.

Manipulation intuitive par roue sensitive

Enregistrement rapide des valeurs mesurées de manière sélective avec enclenchement (Trigger) et (avance rapide) (Peut être utilisé comme Oscilloscope)

Représentation graphique et exploitation (Par exemple libre allocation des axes , Zoom , Ajustement des lignes) Connecteur-USB pour la présentation et l'évaluation sur PC à travers l'assistance complète de CASSY Lab 2 (524 220)

Connecteur - USB pour simple transport des données de mesures et capture d'écran aussi sans PC

Avec des pieds de montage très pratique

Avec WLAN intégré

Caractéristiques techniques :

Ecran d'affichage: 9 cm(3,5"), QVGA, couleur, clair (réglable jusqu'a 400 cd/m²)

Entrées : 3 (utilisées simultanément)

Entrée A: U ou capteur CASSY ou capteur M Entrée B: I ou capteur CASSY ou capteur M

Entrée :température

Gamme de mesure $U : \pm 0.1/\pm 0.3/\pm 1/\pm 3/\pm 10/\pm 30 \text{ V}$ Gamme de mesure $I : \pm 0.03/\pm 0.1/\pm 0.3/\pm 1/\pm 3 \text{ A}$

Gamme de mesure ? : -200 ... +200 °C / -200 ... +1200 °C

Gamme de mesure : 2 chacune , pour capteur CASSY et capteur M

Taux d'échantillonage : max. 500.000 valeurs/s Résolution des entrées analogiques : 12 Bits Résolution des entrées Temporisateurs : 20 ns

Haut parleur : Tonalité intègré et Tube compteur-GM (chacune commutable)

Stockage de données : micro carte SD intégré pour plus de millier de données de mesure et capture d'écran.

WLAN: 802.11 b/g/n comme point d'accès ou client (WPA/WPA2)

Server VNC : Intégré

Port USB: 1 pour une connexion clé USB et un PC

Capacité de l'accumulateur : 14 Wh (type AA , échangeable)

Durée de charge de l'accumulateur : 8 Heures en fonctionnement , plusieurs années en Standby

Verrou Kensington : Possibilité de connexion intégré pour sécurité contre vol.

Dimension: 175 mm x 95 mm x 40 mm

Matériel livré:

Mobile-CASSY 2 WLAN

Chargeur avec transformateur de sécurité selon la norme DIN EN 61558-2-6

Capteur de température NiCr-Ni

Guide de démarrage rapide

Date d'édition: 17.12.2025

En option:

Adaptateur de charge pour plusieurs Mobile-CASSY 2 (524 0034) comme accessoire disponible. Câble USB 6890605

Ref: 524066

Capteur de pression S, ± 70 hPa pour interfaces CASSY

Pour la mesure de très petites différences de pression avec CASSY (524013, 524006, 524018, 524005W) ou les instruments de mesure universels (531835, 531836, 531837), par ex. pour les expériences sur l'écoulement dans le tunnel aérodynamique (37312) ou le tube de Venturi (de 373091). Se branche au dispositif expérimental au moyen de deux embouts ($4mm \varnothing$). Livré avec tuyau en PVC (667192) et deux raccords avec olive (604520).

Caractéristiques techniques :

Gammes de mesure : $\pm 0.7/\pm 2.1/\pm 7/\pm 21/\pm 70$ hPa Résolution : 0.05 % de la gamme de mesure Dimensions : 70 mm x 50 mm x 25 mm

Masse: 75 g

Produits alternatifs

Ref: P1.8.7.1

P1.8.7.1 Mesures sur des profils d'aile dans le tunnel aérodynamique

Au cours de l'expérience P1.8.7.1, on mesure la traînée aérodynamique FW et la poussée verticale FA dune surface portante en fonction de langle dattaque à de laile par rapport à la direction du courant. On reporte dans un diagramme polaire FW en fonction de FA avec langle dattaque à comme paramètre. On peut par exemple déduire de ce diagramme polaire langle dattaque optimal.

On effectue au cours de l'expérience des mesures correspondantes également sur des profils dailes fabriqués par lexpérimentateur.

On étudie pour cela quelle forme le profil daile doit avoir pour obtenir un rapport FW/FA aussi petit que possible pour un angle dattaque á donné.

Date d'édition: 17.12.2025

Équipement comprenant :

1 373 12 Tunnel aérodynamique

1 373 041 Ventilateur aspirant/refoulant

1 373 075 Chariot de mesure pour le tunnel aérodynamique

1 373 08 Accessoires de mesure 2

1 373 14 Dynamomètre sectoriel 0,65 N

Ref: P1.8.7.3

P1.8.7.3 Vérification de l'équation de Bernoulli - Mesure avec le manomètre de précision

Le but des deux expériences P1.8.7.3 et P1.8.7.4 est de vérifier léquation de Bernoulli.

On mesure la différence entre pression totale et pression statique en fonction de la section en ayant rajouté une rampe réduisant continuellement la section du tunnel aérodynamique le long de la direction du courant.

En admettant que la loi de la continuité soit valable, la section A offre un moyen de mesurer la vitesse v du courant par

 $v = v0 \cdot A0 / A$

v0 : vitesse du courant pour une section A0

La relation

- 1/A²

découlant de léquation de Bernoulli est vérifiée.

Équipement comprenant :

1 373 12 Tunnel aérodynamique

1 373 041 Ventilateur aspirant/refoulant

1 373 13 Sonde manométrique de Prandtl

1 373 075 Chariot de mesure pour le tunnel aérodynamique

1 373 10 Manomètre de précision

1 391 151 Liquide manométrique 100 ml [DANGER H304 H412]