

Date d'édition: 16.12.2025

Ref: EWTGUWP100

WP 100 Déformation de barres soumises à une flexion ou à une torsion (Réf. 020.10000)

Influence du matériau, de la section et de la longueur d?encastrement sur les déformations

La flexion et la torsion constituent des charges typiques pour les composants.

Les contraintes et déformations qui en résultent peuvent entraîner une défaillance du composant.

Différents facteurs jouent ici un rôle, p. ex. le matériau, la section, la longueur dencastrement et le type dappui. Le WP 100 étudie linfluence de ces facteurs sur la déformation dune barre soumise à une charge de flexion ou à un moment de torsion.

Un jeu de barres dessai est assemblé afin de pouvoir comparer directement les résultats de mesure.

La barre étudiée est fixée sur deux supports mobiles et chargée des poids.

Les déformations qui en résultent sont enregistrées par un comparateur à cadran.

Les supports contiennent des mandrins permettant de fixer les barres de torsion et des appuis pour les barres lors de lessai de flexion.

Les appuis offrent différentes possibilités dencastrement permettant détudier les montages isostatiques ou hyperstatiques.

Le moment de torsion est déclenché à laide dun dispositif sur un support.

Le point dapplication de la charge utilisé pour générer le moment de flexion peut être déplacé.

Les pièces dessai sont logées de manière claire et protégées dans un système de rangement.

Lensemble du montage expérimental est monté sur le bâti.

Contenu didactique / Essais

- essais de flexion

détermination du module délasticité

systèmes isostatiques (poutre sur 2 supports; poutre en porte-à-faux)

systèmes hyperstatiques (poutre à double encastrement)

déformation dune poutre en fonction de matériau, géométrie (largeur du profil, hauteur du profil, longueur), type et espacement de lappui

établissement des rapports proportionnels pour la déformation

- essais de torsion

détermination du module de cisaillement de différents matériaux angle de torsion en fonction de longueur dencastrement, diamètre de la barre établissement des rapports proportionnels pour langle de torsion

Les grandes lignes

- déformation élastique de poutres isostatiques et hyperstatiques soumises à une charge de flexion
- torsion élastique de barres rondes soumises à un moment de torsion
- influence du matériau, de la section et de la longueur dencastrement sur les déformations

Les caractéristiques techniques 17 barres pour les essais de flexion

Date d'édition: 16.12.2025

- matériau: aluminium, acier, laiton, Cu
- hauteur pour Lxl 510x20mm: H=3?10mm (alu.)
- largeur pour Lxh 510x5mm: B=10?30mm (alu.)
- longueur pour lxh 20x4mm: L=210?510mm (alu.)
- Lxlxh: 20x4x510mm (aluminium, acier, laiton, Cu)
- Lxlxh: 10x10x510mm (aluminium)

22 barres de torsion

- matériau: aluminium, acier, laiton, Cu
- longueur pour Ø 10mm: 50?640mm (alu.)
- ØxL: 10x50mm/10x340mm (aluminium, acier, Cu, laiton)
- diamètre pour L=50/340mm: Ø 5?12mm (acier)

Comparateur à cadran

- 0?10mm, graduation: 0,01mm Ruban gradué, graduation: 0,01m

Poids

- 1x 100g (suspente)

- 1x 100g, 1x 400g, 1x 500g, 1x 900g

Dimensions et poids

Lxlxh: 1000x250x200mm

Poids: env. 18kg

Lxlxh: 1170x480x207mm (système de rangement)

Poids: env. 12kg (système de rangement)

Liste de livraison

1 bâti

2 supports

1 dispositif de génération du moment de torsion

17 barres pour essai de flexion

22 barres de torsion

1 comparateur à cadran avec support, 1 ruban gradué

1 jeu de poids

2 clés pour vis à six pans creux

1 système de rangement avec mousse de protection

1 documentation didactique

Accessoires disponibles et options

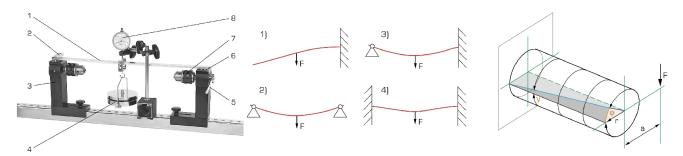
W

Catégories / Arborescence

Techniques > Mécanique > Résistance des matériaux > Déformations élastiques

Formations > STI2D > Architecture & Construction

Formations > STI2D > Innovation Technologique & Eco Conception


Formations > STI2D > Tronc Commun

Systèmes Didactiques s.a.r.l.

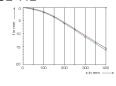
Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 16.12.2025

Produits alternatifs

Date d'édition : 16.12.2025

Ref: EWTGUSE110.14


SE 110.14 Courbe de flexion élastique d?une poutre (Réf. 022.11014)

Démonstration du théorème de Maxwell-Betti, Nécessite bâti SE 112

Les poutres sont des éléments de construction importants des machines et des bâtiments, susceptibles de se déformer lorsquelles sont soumises à une charge.

Sur les poutres, la charge est appliquée dans la direction perpendiculaire à laxe et entraîne leur fléchissement. Pour déterminer le fléchissement de poutres dans la zone où le comportement du matériau est élastique linéaire, on utilise la courbe de flexion élastique également appelée ligne élastique.

En utilisant les coefficients dinfluence et la loi de transposition de Maxwell-Betti, on peut calculer le fléchissement de la poutre à nimporte quel endroit de la poutre.

Le SE 110.14 permet de déterminer la déformation dune poutre en flexion.

On étudie pour cela une poutre avec des charges différentes, des conditions dappui différentes et une surdétermination statique.

La courbe de flexion élastique est déterminée par des calculs et vérifiée de manière expérimentale.

Le montage expérimental comprend trois poutres composées de matériaux différents.

Deux appuis articulés et un appui fixe avec dispositif de serrage sont à disposition.

Les comparateurs à cadran enregistrent les déformations conséguentes de la poutre.

Les pièces de lessai sont disposées de manière claire, et bien protégées dans un système de rangement.

Lensemble du montage expérimental est réalisé dans le bâti SE 112.

Contenu didactique / Essais

- courbe de flexion élastique avec différentes charges
- courbe de flexion élastique avec différentes conditions dappui
- démonstration de léquation de Maxwell-Betti
- courbe de flexion et forces dappui pour des systèmes hyperstatiques

Les grandes lignes

- poutre en différents matériaux: acier, laiton et aluminium

Les caractéristiques techniques

Poutre

- acier, Lxlxh: 1000x20x3mm - laiton, Lxlxh: 1000x20x6mm - aluminium, Lxlxh: 1000x20x6mm

Poids

- 2x 1N (suspente)

- 10x 1N

- 6x 5N

Measuring ranges

- déplacement: 0...20mm

- graduation: 0,01mm

Dimensions et poids

Lxlxh: 1170x480x178mm (système de rangement)

Poids: env. 42kg (total)

Liste de livraison

Date d'édition: 16.12.2025

3 poutres

2 appuis articulés

1 appui fixe avec dispositif de serrage

2 comparateurs à cadran avec support

1 jeu de poids

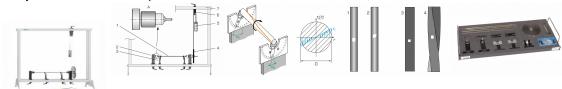
1 système de rangement avec mousse de protection

1 documentation didactique

Accessoires disponibles et options

SE112 - Bâti de montage

Produits alternatifs


SE110.47 - Méthodes de détermination de la courbe de flexion élastique WP100 - Déformation de barres soumises à une flexion ou à une torsion

WP950 - Déformation de poutres droites

Ref: EWTGUSE110.29

SE 110.29 Torsion de barres (Réf. 022.11029)

Analyse de la torsion élastique de barres à section ouverte et fermée, Nécessite bâti SE 112

La torsion apparaît avant tout au niveau des axes et des arbres dentraînement des véhicules et des machines. Les sections de larbre sont poussées lune contre lautre autour de laxe longitudinal en raison des couples de rotation de larbre.

Dans un arbre, les cercles conservent leur forme arrondie sous leffet de la torsion des sections circulaires.

Les surfaces de section restent plates, aucun gauchissement nest constaté.

En cas de faibles torsions, la longueur et le rayon restent inchangés.

Les lignes droites situées sur le périmètre extérieur de larbre et parallèles à laxe sont appelées hélices.

Des sections non circulaires entraînent généralement un gauchissement.

Le SE 110.29 étudie la torsion dune barre soumise à un moment de torsion.

La barre est encastrée dans deux supports coulissants avec mandrin.

Le moment de torsion dapplication est généré par un disque circulaire, une poulie de renvoi et des poids.

La longueur dencastrement et le moment de torsion peuvent varier.

Les torsions résultantes sont lues par des indicateurs dangle en deux endroits de la barre.

Lutilisation de la barre ronde permet de dispenser les bases de la torsion élastique.

Trois autres barres sont disponibles pour étudier les cas particuliers: deux profils fermés à paroi mince (tube, tube rectangulaire) et un tube fendu en longueur (profil ouvert à paroi mince).

Les pièces dessai sont logées de manière claire et protégée dans un système de rangement.

Lensemble du montage expérimental est monté dans le bâti SE 112.

Contenu didactique / Essais

- torsion dune barre
- module de cisaillement et moment d'inertie polaire
- angle de torsion en fonction de la longueur dencastrement
- angle de torsion en fonction du moment de torsion
- influence de la rigidité en torsion sur la torsion
- -- barre ronde avec section pleine
- -- tube

Date d'édition : 16.12.2025

- -- tube, fendu en longueur
- -- tube rectangulaire
- calcul de langle de torsion
- comparaison de langle de torsion calculé et mesuré

Les grandes lignes

- torsion élastique dune barre soumise à un moment de torsion
- barre ronde, tube, tube fendu en longueur et tube rectangulaire comme barres dessai
- affichage de langle de torsion à deux endroits de la barre

Les caracteristiques techniques

- 4 barres en laiton, L=695mm
- barre ronde, Ø=6mm
- tube, tube fendu Ø=6mm, épaisseur de paroi: 1mm, largeur de fente: 0,3mm
- tube rectangulaire lxh: 6mm, épaisseur de paroi: 1mm

Disque servant au déclenchement de la charge

- rayon daction: 110mm

Indicateur dangle

- plage de mesure: ±90°

- graduation: 1°

Poids

- 1x 1N (suspente)
- 4x 1N
- 3x 5N

Dimensions et poids

Lxlxh: 1170x480x178mm (système de rangement)

Poids: env. 27kg (total)

Liste de livraison

- 2 supports avec mandrin
- 2 indicateurs dangle
- 4 barres
- 1 poulie de renvoi avec fixation
- 1 câble
- 1 jeu de poids
- 2 clés pour vis à six pans creux
- 1 système de rangement avec mousse de protection
- 1 documentation didactique

Accessoires disponibles et options

SE112 - Bâti de montage

Produits alternatifs

WP100 - Déformation de barres soumises à une flexion ou à une torsion