

Date d'édition: 06.12.2025

Ref: EWTGUWL376

WL 376 Conductivité thermique dans les matériaux de construction (Réf. 060.37600)

Mesure de la résistance thermique selon DIN 52612. Avec interface PC USB et logiciel inclus

Cet appareil d'essai permet de réaliser des expériences de conduction thermique stationnaire suivant DIN 52612 dans des matériaux non métalliques tels que le polystyrène, le PMMA, le liège ou le plâtre.

Des échantillons plats sont mis entre une plaque chaude et une plaque refroidie par eau.

Un dispositif de serrage garantit une pression appliquée et un contact thermique reproductible.

Un capteur thermique spécial mesure le flux de chaleur. La régulation est faite par le logiciel fourni.

Les températures de la plaque chaude et de la plaque froide sont ajustées à l'aide des régulateurs logiciel et maintiennent constantes dans des limites étroites.

Les valeurs mesurées sont transmises vers un PC afin dy être évaluées à laide dun logiciel fourni. La transmission des données au PC se fait par une interface USB.

Contenu didactique / Essais

- détermination de la conductivité thermique Lambda de divers matériaux
- détermination de la résistance thermique
- conductivité thermique Lambda pour le couplage en série de plusieurs échantillons (jusqu'à une épaisseur de 50mm)

Les grandes lignes

- Conduction thermique dans les matériaux de construction non métalliques
- Possibilité d'utiliser des matériaux ou des combinaisons de matériaux jusqu'à une épaisseur de 50mm

Les caractéristiques techniques

Mat chauffant électrique

- puissance: 500W
- température max.: 200°C, limitée jusqu'à 80°C

Échantillons

- Lxl: 300x300mm
- épaisseur: jusqu'à 50mm max.
- matérial: Armaflex, carton gris, PMMA, Styropor, PS,

POM, liège, plâtre Plages de mesure

- température: 3x 0...100°C, 2x 0...200°C - densité de flux de chaleur: 0...1533W/m²

Dimensions et poids

Lxlxh: 710x440x550mm (appareil d'essai)

Date d'édition: 06.12.2025

Lxlxh: 710x440x200mm (appareil de commande)

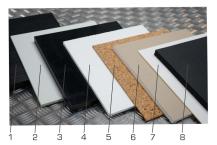
Poids: env. 90kg (total)

Necessaire au fonctionnement

230V, 50/60Hz

Raccord d'eau froide, drain

Liste de livraison

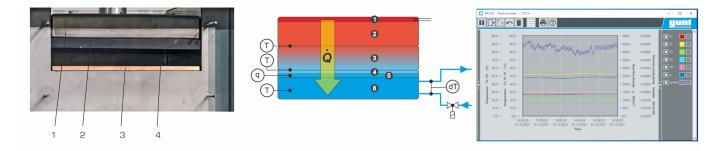

- 1 appareil d'essai
- 1 appareil de commande
- 8 échantillons
- 2 flexibles
- 1 CD avec logiciel GUNT + câble USB
- 1 mode d'emploi

Accessoires disponibles et options WP300.09 - Chariot de laboratoire

Catégories / Arborescence

Techniques > Thermique > Principes de base thermodynamique > Principes de la transmission de chaleur Techniques > Energie Environnement > Thermique > Éfficacité énergétique en génie du batîment

Systèmes Didactiques s.a.r.l.


Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 06.12.2025

Date d'édition : 06.12.2025

Options

Date d'édition: 06.12.2025

Ref: EWTGUWL110.20

WL 110.20 Générateur d'eau froide en circuit fermé (Réf. 060.11020)

Le WL 110.20 est adaptée à lunité dalimentation pour échangeurs de chaleur WL 110.

La température de consigne est spécifiée via lécran tactile de IAPI du WL 110.

Lalimentation en eau froide complète également dautres dispositifs qui ont des conditions particulières pour lalimentation en eau, par exemple CE 310, ET 262, WL 210 ou WL 376.

Dans ce cas, la définition de la température de consigne se fait directement sur le régulateur.

Lalimentation en eau froide permet un fonctionnement judicieux aux températures ambiantes et aux températures deau élevées.

Lappareil est équipé de son propre groupe frigorifique, dun réservoir deau et dune pompe de circulation.

Dans le réservoir deau, un serpentin est utilisé comme évaporateur du cycle frigorifique et refroidit leau.

Un régulateur électronique maintient une température constante de leau.

Les grandes lignes

- Alimentation en eau froide pour la WL 110 et la CE 310

Les caractéristiques techniques

Pompe centrifuge

- débit de refoulement max.: 600L/h - hauteur de refoulement max.: 30m

- puissance absorbée: 120W Groupe frigorifique

- puissance frigorifique: 833W à -10/32°C

- puissance absorbée: 367W à -10/32°C

Réservoir: 15L Agent réfrigérant

- R513A

- GWP:632

- volume de remplissage: 1kg

- équivalent CO2: 0,6t

230V, 50Hz, 1 phase

Dimensions et poids Lxlxh: 1000x630x530mm

Poids: env. 76kg

Liste de livraison

1 générateur deau froide

1 jeu de flexibles

1 notice

Date d'édition: 06.12.2025

Produits alternatifs

Ref: P2.2.1.2

P2.2.1.2 Détermination de la conductivité thermique de matériaux de construction

selon le principe du capteur de flux thermique

Lobjectif des expériences P2.2.1.1 et P2.2.1.2 est de déterminer la conductivité thermique de matériaux de construction.

On pose pour cela des plaques de matériaux de construction dans une chambre calorimétrique puis on les chauffe sur la face avant.

On mesure les températures 1 et 2 avec des sondes.

On détermine le flux de chaleur soit daprès la tension électrique de la plaque chauffante, soit par mesure de la température sur une plaque de mesure du flux de chaleur, compressée derrière la plaque de matériau de construction et dont la conductivité thermique ë0 est connue.

Équipement comprenant :

- 1 389 29 Chambre calorimétrique
- 1 389 30 Échantillons de matériaux de construction pour la chambre calorimétrique
- 1 726 890 Alimentation CC à courant fort 1...32 V/0...20 A
- 1 524 013 Sensor-CASSY 2
- 1 524 220 CASSY Lab 2
- 2 524 0673 Connecteur adaptateur NiCr-Ni S, type K
- 3 529 676 Sonde de température NiCr-Ni, 1,5 mm, type K
- 1 500 98 Douilles d'adaptation de sécurité, noires (6)
- 2 500 644 Câble de connexion de sécurité, 100 cm, noir
- 1 En complément : PC avec Windows XP/Vista/7/8/10 (x86 ou x64)

Ref: P2.2.1.1

P2.2.1.1 Détermination de la conductivité thermique de matériaux de construction

selon le procédé à une plaque

Lobjectif des expériences P2.2.1.1 et P2.2.1.2 est de déterminer la conductivité thermique de matériaux de construction.

On pose pour cela des plaques de matériaux de construction dans une chambre calorimétrique puis on les chauffe sur la face avant.

On mesure les températures 1 et 2 avec des sondes.

On détermine le flux de chaleur soit daprès la tension électrique de la plaque chauffante, soit par mesure de la SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 06.12.2025

température sur une plaque de mesure du flux de chaleur, compressée derrière la plaque de matériau de construction et dont la conductivité thermique ë0 est connue.

Équipement comprenant :

- 1 389 29 Chambre calorimétrique
- 1 389 30 Échantillons de matériaux de construction pour la chambre calorimétrique
- 1 726 890 Alimentation CC à courant fort 1...32 V/0...20 A
- 1 524 013 Sensor-CASSY 2
- 1 524 220 CASSY Lab 2
- 1 524 0673 Connecteur adaptateur NiCr-Ni S, type K
- 2 529 676 Sonde de température NiCr-Ni, 1,5 mm, type K
- 1 500 98 Douilles d'adaptation de sécurité, noires (6)
- 2 500 624 Câble de connexion de sécurité 50 cm, noir
- 4 500 644 Câble de connexion de sécurité, 100 cm, noir
- 1 En complément : PC avec Windows XP/Vista/7/8/10 (x86 ou x64)