

Date d'édition : 29.11.2025

Ref: EWTGUTM150

TM 150 Système didactique sur les vibrations (Réf. 040.15000)

Expériences portant sur amortissement, résonance et effets d?absorption sur des vibrations forcées

Les vibrations mécaniques représentent, en règle générale, un effet secondaire indésirable rencontré dans de nombreux domaines techniques.

On peut mentionner par exemple les vibrations des véhicules sur une route accidentée, ou encore les vibrations dun moteur.

La science des vibrations est un domaine particulièrement complexe de la mécanique.

Avec le système didactique TM 150 sur les vibrations, il est possible de traiter de nombreuses thématiques de la science des vibrations dune manière expérimentale et explicite.

Cela va des simples oscillations pendulaires à labsorption de vibrations, en passant par les vibrations forcées avec phénomènes de résonance.

Lélément central du système didactique sur les vibrations est un cadre profilé stable sur lequel on peut fixer les différents montages expérimentaux.

Les nombreux accessoires sont installés sur une table de laboratoire mobile disposant de tiroirs.

Outre des vibrations libres, on peut aussi représenter des vibrations forcées au moyen dun excitateur à balourd commandé par un moteur électrique.

La fréquence dexcitation est ajustée et affichée sur un appareil de commande.

Un amortisseur à huile permet détudier les vibrations amorties en ajustant le degré damortissement.

Labsorption de vibrations est mise en évidence par un oscillateur de flexion ajustable.

Un traceur à tambour mécanique et un traceur de courbes polaires offrent la possibilité denregistrer les vibrations. Avec le système dacquisition de données TM 150.20 disponible en option, les valeurs de mesure peuvent être affichées et évaluées sur un PC.

Contenu didactique / Essais

- essais avec des pendules
- -- pendule de Kater (réversible)
- -- longueur de pendule réduite
- -- système masse-ressort
- poutre oscillante
- -- vibration non amortie
- -- vibration amortie
- -- vibrations forcées
- résonance amortie et résonance non amortie
- effet dabsorption sur un oscillateur à plusieurs masses

Les grandes lignes

- spectre dessais approfondi et complet en science des vibrations mécaniques
- expériences sur différents pendules, poutres oscillantes et systèmes masse-ressort
- amortissement, résonance et effets dabsorption sur des vibrations forcées

Date d'édition : 29.11.2025

Les caracteristiques techniques

Poutre, rigide: Lxlxh: 700x25x12mm, 1,6kg Poutre, élastique: Lxlxh: 25x4x700mm, 0,6kg

Ressorts de traction-compression

- 0,75N/mm
- 1,5N/mm
- 3,0N/mm

Excitateur à balourd

- 0...50Hz
- 100cmg

Amortisseur à huile: 5...15Ns/m

Absorbeur de vibrations

- ressort à lame: lxh: 20x1,5mm
- masse totale: env. 1,1kg
- réglable: 5...50Hz

Traceur à tambour: 20mm/s, largeur 100mm Traceur de courbes polaires: Ø=100mm

230V, 50Hz, 1 phase

Dimensions et poids

Lxlxh: 1010x760x1800mm

Ouverture du bâti lxh: 870x650mm

Poids: env. 150kg

Liste de livraison

- 1 banc dessai
- 6 pendules
- 2 poutres
- 3 ressorts
- 1 appareil de commande pour excitateur à balourd
- 1 excitateur à balourd
- 1 amortisseur à huile
- 2 traceurs de courbes
- 1 documentation didactique

Accessoires disponibles et options

TM150.02 - Vibrations de torsion libres et amorties

TM150.20 - Système d'acquisition de données

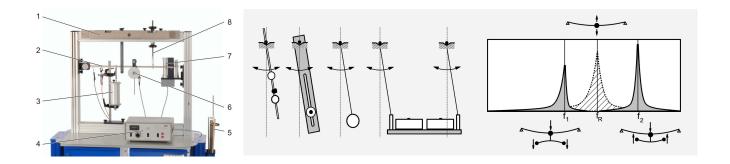
Produits alternatifs

SE110.58 - Vibrations libres sur une poutre en flexion

TM155 - Vibrations libres et forcées

TM161 - Pendule à tige et pendule à fil

TM162 - Pendules à suspension bifilaire / trifilaire



Systèmes Didactiques s.a.r.l.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 29.11.2025

Techniques > Mécanique > Dynamique > Vibrations

Options

Date d'édition : 29.11.2025

Ref: EWTGUTM150.20

TM 150.20 Système d'acquisition de données (Réf. 040.15020)

logiciel PC, capteur déplacement inductif (TM150.01), capteur (force d'excitateur), câbles

Ce système dacquisition de données complète le système didactique sur les vibrations TM 150, et permet dévaluer les signaux vibratoires sur un PC.

Ce système permet de générer, enregistrer et éditer facilement des courbes de fréquence et de phase.

Le système offre en outre toutes les fonctions importantes dun oscilloscope à mémoire numérique, et peut calculer les spectres de fréquence des signaux.

En plus du logiciel, dun capteur de déplacement et dun capteur de référence, un boîtier dinterface est compris dans la liste de livraison.

Ce dernier alimente jusquà trois capteurs, prépare leurs signaux de mesure pour le PC et les affiche sur trois sorties analogiques.

Tous les composants structurels du système sont disposés à portée de main et protégés dans un système de rangement.

Contenu didactique / Essais

- essais supportés sur le système TM 150
- -- vibration propre d'une poutre oscillante
- -- vibration amortie d'une poutre oscillante
- -- vibration forcée d'une poutre oscillante (résonance amortie et non amortie)
- -- mesures de la fréquence et des périodes
- -- pendule réversible

Les grandes lignes

- mesure et représentation de courbe déphasage-fréquence
- oscilloscope à mémoire numérique

Les caracteristiques techniques Canaux d'entrée de capteur: 3

Entrées mode opératoire de l'oscilloscope: 2

Base de temps: 10...750ms/DIV

Plage de saisie: 2000 valeurs mesurées

Capteur de déplacement - plage de mesure: 5...10mm - gamme des fréquences: 0...50Hz

230V, 50Hz, 1 phase

Dimensions et poids

Lxlxh: 260x110x260mm (boîtier d'interface); Poids: env. 7kg

Lxlxh: 600x400x170mm (système de rangement)

Necessaire au fonctionnement

PC avec Windows

Liste de livraison

CD avec logiciel GUNT + câble USB, 1 boîtier d'interface, 1 capteur de déplacement, 1 capteur de référence, 1 jeu de câbles, 1 système de rangement, 1 notice SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition : 29.11.2025

Ref: EWTGUTM150.02

TM 150.02 Vibrations de torsion libres et amorties, influence de la masse, rigidité (Réf. 040.15002)

Livré sans le cadre, option du TM150 ou TM155

Les vibrations de torsion jouent un rôle important dans les systèmes dentraînement.

Des fréquences propres mal réglées peuvent produire des phénomènes de résonance, qui peuvent à leur tour provoguer des dommages importants.

Le TM 150.02 permet de générer des vibrations de torsion libres, et détudier linfluence de la rigidité en torsion, de la masse et de lamortissement sur la fréquence et lamplitude.

Le jeu daccessoires est destiné au montage des systèmes didactiques sur les vibrations TM 150 ou TM 155.

Le jeu daccessoires comprend trois barres de torsion différentes et deux disques de masse différents pour la construction doscillateurs de torsion.

On peut varier la rigidité des barres de torsion en modifiant la longueur active de la barre, si bien que la fréquence propre de la vibration de torsion est largement ajustable.

On fixe les paliers et les disques de masse à laide de mandrins aux endroits souhaités sur les barres de torsion.

Un amortisseur à huile permet de représenter des vibrations amorties.

Un dispositif décriture à barres permet denregistrer les vibrations sur le traceur du TM 150/TM 155.

Contenu didactique / Essais

- fréquence propre dun oscillateur de torsion
- influence de la rigidité en torsion, de la masse et de lamortissement

Les grandes lignes

- influence de la masse, de la rigidité en torsion et de lamortissement sur le comportement dun oscillateur de torsion

Les caractéristiques techniques

Barres de torsion, acier inox

- diamètres: 3mm, 5mm, 6mm
- longueur: 800mm

Disques de masse

- petit: Ø=150mm avec env. 2,7kg
- grand: Ø=228mm avec env. 4,8kg

Mandrins: Ø=0,5...8,0mm

Dimensions et poids

Lxlxh: 480x240x1180mm

Poids: env. 33kg

Liste de livraison

1 appareil dessai

1 documentation didactique

Accessoires disponibles et options

TM150 - Système didactique sur les vibrations

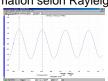
TM155 - Vibrations libres et forcées

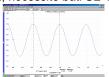
Date d'édition : 29.11.2025

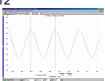
Produits alternatifs

TM140 - Vibrations de torsion libres et forcées

TM163 - Vibrations de torsion


Produits alternatifs


Ref: EWTGUSE110.58


SE 110.58 Vibrations libres sur une poutre en flexion (Réf. 022.11058)

méthode par approximation selon Rayleigh, nécessite bâti SE 112

Un oscillateur laissé à lui-même après une excitation unique effectue des vibrations libres.

La fréquence de la vibration libre est la fréquence propre de loscillateur.

Sur le SE 110.58, une poutre en flexion est utilisée comme oscillateur du système.

La poutre en flexion peut être placée en position verticale debout ou suspendue, ou en position horizontale dans le bâti de montage SE 112.

Sa fréquence propre peut être influencée aussi bien par le biais de la longueur de serrage que par des masses mobiles.

La poutre en flexion est déviée manuellement et effectue des vibrations amorties libres.

Les amplitudes résultantes sont enregistrées par des jauges de contrainte et un amplificateur de mesure.

Les valeurs de mesure sont transmises vers un PC, où, à laide du logiciel GUNT fourni, elles sont enregistrées, puis les résultats des essais y sont évalués graphiquement.

Contenu didactique / Essais

- vibration libre dune poutre en flexion verticale et horizontale
- détermination des fréquences propres selon Rayleigh
- influence de la longueur de serrage et de la masse sur la fréquence propre

Les grandes lignes

- fréquences propres dune poutre en flexion en vibration libre
- méthode dapproximation selon Rayleigh

Les caractéristiques techniques

Poutre en flexion

- Lxlxh: 635x20x3mm

- matériau: AlMgSi0,5F22

Poids

- 10x 100g

230V, 50Hz, 1 phase

200 1, 001 12, 1 pridoc

Dimensions et poids

Lxlxh: 720x480x180mm (système de rangement)

Poids: env. 14kg (total)

Date d'édition : 29.11.2025

Nécessaire au fonctionnement PC avec Windows

Liste de livraison

- 1 poutre en flexion
- 1 amplificateur de mesure
- 1 jeu de poids
- 1 système de rangement avec mousse de protection
- 1 CD avec logiciel GUNT + câble USB
- 1 documentation didactique

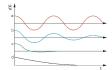
Accessoires disponibles et options SE112 - Bâti de montage

Produits alternatifs

TM150 - Système didactique sur les vibrations

Ref: EWTGUTM155

TM 155 Vibrations libres et forcées (Réf. 040.15500)


Expériences de base sur la science des vibrations mécaniques

Dans le domaine technique, on rencontre une grande diversité de vibrations forcées.

Tandis que ces vibrations peuvent être dans certains cas souhaitées (tamiseuses à vibrations, convoyeurs oscillants...), elles sont à linverse souvent indésirables sur les moteurs ou autres machines rotatives.

Lappareil dessai TM 155 permet dexpliquer avec une grande clarté les principes de base relatifs aux vibrations libres et vibrations forcées.

Les différences entre les deux types principaux dexcitation pour les vibrations forcées peuvent être clairement montrées sur un modèle de vibration simple.

Lélément central de lappareil dessai est un cadre profilé stable en aluminium, sur lequel on peut fixer les différents montages expérimentaux.

On utilise une poutre oscillante comme système de vibration.

Cette dernière peut être configurée facilement, et avec une grande flexibilité.

Les ressorts, lamortisseur et le générateur de vibrations peuvent être installés aux positions que lon souhaite.

Un excitateur à balourd et un excitateur à déplacement sont disponibles, au choix, pour lexcitation ponctuelle du pied du ressort.

La fréquence dexcitation est ajustée et affichée sur un appareil de commande.

Un amortisseur hydraulique à huile permet d'obtenir des vibrations amorties avec un degré damortissement ajustable. Un traceur à tambour mécanique offre la possibilité denregistrer les vibrations.

Avec le système dacquisition de données TM 155.20 disponible en option, les valeurs de mesure peuvent être affichées et évaluées sur un PC.

Un kit de travaux pratiques sur les vibrations de torsion (TM 150.02) est disponible comme accessoire.

Contenu didactique / Essais

- vibrations libres
- vibrations amorties
- excitation de force due à la masse et excitation à déplacement
- vibrations forcées

Date d'édition : 29.11.2025

- résonance
- réponse en amplitude et courbe de phase

Les grandes lignes

- démonstration des principes de base élémentaires de la technique des vibrations mécaniques
- amortissement et résonance sur des vibrations forcées
- deux principes différents pour la génération de vibrations

Les caractéristiques techniques

Poutre oscillante: Lxlxh: 700x25x12mm, 1,6kg

Ressorts hélicoïdaux

- 0,75N/mm
- 1,5N/mm
- 3,0N/mm

Fréquence dexcitation: 0...50Hz, à régulation électronique

Balourd de lexcitateur à balourd: 0...1000mmg Course de lexcitateur de déplacement: 20mm

Constante de lamortisseur: 5...15Ns/m, rempli dhuile

Traceur à tambour mécanique

- avancée: 20mm/s

- largeur de la bande de papier: 100mm

230V, 50Hz, 1 phase

Dimensions et poids Lxlxh: 1000x420x900mm

Ouverture du bâti lxh: 870x650mm

Poids: env. 52kg

Système de rangement: Lxlxh: 1170x480x237mm

Poids: env. 12kg

Liste de livraison

- 1 appareil dessai
- 1 poutre oscillante
- 3 ressorts hélicoïdaux
- 1 excitateur à balourd
- 1 excitateur à déplacement
- 1 appareil de commande pour excitateur à balourd
- 1 amortisseur
- 1 mesureur damplitude
- 1 traceur à tambour
- 1 système de rangement avec mousse de protection
- 1 documentation didactique

Accessoires disponibles et options

TM150.02 - Vibrations de torsion libres et amorties

TM155.20 - Système d'acquisition de données

Produits alternatifs

TM150 - Système didactique sur les vibrations

Date d'édition : 29.11.2025

Ref: EWTGUTM161

TM 161 Pendule à tige et pendule à fil (Réf. 040.16100)

Comparaison entre pendule physique et mathématique

Les pendules effectuent des oscillations de torsion.

La force de gravité produit le moment de redressement.

On fait la distinction entre le pendule mathématique et le pendule physique.

Un pendule mathématique décrit un pendule à fil idéalisé.

Sur le pendule physique, on tient compte de la forme et de la taille du corps de pendule.

Les deux pendules sont des modèles théoriques destinés à décrire un pendule réel.

Le TM 161 permet détudier les oscillations pendulaires.

On compare un pendule à fil (comme pendule mathématique) et un pendule à tige (comme pendule physique).

Lappareil comprend une tige en métal avec une masse supplémentaire mobile.

Il est possible dajuster le point de suspension au niveau du palier à couteau du pendule.

La longueur du pendule à fil peut être facilement modifiée à laide dun dispositif de blocage.

Lappareil dessai est conçu pour être fixé au mur.

Contenu didactique / Essais

- durée doscillation du pendule à fil et du pendule à tige
- détermination du centre de gravité du corps sur le pendule à tige
- longueur de pendule réduite et centre dinertie du pendule à tige

Les grandes lignes

- étude doscillations pendulaires
- comparaison du pendule physique et du pendule mathématique

Les caractéristiques techniques

Pendule à fil

- longueur jusquà 2000mm
- fil en nylon
- poids

-- diamètre: 50mm -- masse: 0,52kg

Pendule à tige

longueur: 1000mm
diamètre: 8mm
masse: 0,39kg
poids du pendule
diamètre: 50mm
masse: 0,49kg

Chronographe: 1/100s

Dimensions et poids Lxlxh: 250x80x2000mm

Poids: env. 5kg

Liste de livraison

Date d'édition : 29.11.2025

1 appareil dessai

1 documentation didactique

Produits alternatifs

TM150 - Système didactique sur les vibrations TM162 - Pendules à suspension bifilaire / trifilaire

Ref: EWTGUTM162

TM 162 Pendules à suspension bifilaire / trifilaire (Réf. 040.16200)

Détermination des moments d'inertie de masse de différents corps par le test du pendule rotatif

Sur une suspension bifilaire, un corps de pendule est suspendu à deux fils.

Le corps de pendule oscille dans un plan translationnel sans rotation.

Un tel pendule peut être considéré comme un pendule mathématique.

Sur une suspension trifilaire (à trois fils), le corps de pendule effectue une oscillation de torsion.

Loscillation de torsion permet de déterminer le moment dinertie de manière expérimentale.

Le TM 162 permet détudier les oscillations de pendules à suspension bifilaire ou trifilaire.

Une poutre, un cylindre ou un anneau sert de corps de pendule.

La longueur des fils peut être modifiée à laide de dispositifs de blocage.

Les moments dinertie des corps de pendules peuvent être calculés à partir de la durée mesurée des oscillations.

La modification de la longueur des fils permet de varier la durée des oscillations.

Lappareil dessai est conçu pour être fixé au mur.

Contenu didactique / Essais

- influence de la longueur des fils sur la durée des oscillations
- détermination du moment d'inertie de masse

Les grandes lignes

- pendule mathématique et pendule physique
- moment dinertie dans lessai de pendule rotatif

Les caractéristiques techniques

Corps de pendule

- poutre

-- Lxlxh: 40x40x160mm

-- masse: 2kg - cylindre

-- diamètre: 160mm -- hauteur: 19mm -- masse: 3kg

- anneau

-- diamètre extérieur: 160mm -- diamètre intérieur: 100mm

-- hauteur: 41mm -- masse: 4kg

Longueur des fils: jusquà 2000mm

Date d'édition : 29.11.2025

Chronographe: 1/100s

Dimensions et poids Lxlxh: 205x200x2000mm

Poids: env. 12kg

Liste de livraison 1 appareil dessai

1 documentation didactique

Produits alternatifs

TM150 - Système didactique sur les vibrations

TM161 - Pendule à tige et pendule à fil