

Date d'édition : 11.12.2025

Ref: EWTGURT644

RT 644 Banc de régulation de température avec régulateur industriel (Réf. 080.64400)

Déconnexion possible du régulateur interne pour utiliser un régulateur externe, mesure par fiche 4mm

L'appareil d'essai constitue une introduction expérimentale étendue aux principes de base de la technique de régulation à l'exemple d'une régulation de température.

Tous les composants sont montés de manière claire sur un panneau vertical.

Le grand schéma de processus facilite la compréhension.

Le système est constitué de deux circuits d'eau.

Dans le circuit secondaire, de l'eau fraîche est chauffée via un échangeur de chaleur.

La mesure de température se fait à l'aide d'un capteur de température à la sortie de l'eau fraîche.

La température de sortie de l'eau fraîche est réglée par modification du débit d'eau chaude dans le circuit primaire.

Le circuit primaire est constitué d'un réservoir avec chauffage électrique, d'une pompe et d'une électrovanne proportionnelle comme composant de réglage.

Les deux circuits contiennent des rotamètres. Comme régulateur, on utilise un régulateur numérique industriel moderne.

Un robinet à tournant sphérique dans le circuit secondaire permet de générer des grandeurs perturbatrices définies.

La grandeur réglée X et la grandeur réglante Y peuvent être prélevées comme signaux analogiques sur des connecteurs de laboratoire.

De la sorte, on peut raccorder des enregistreurs externes tels qu'un enregistreur ou un oscilloscope.

Comme accessoire, un logiciel de mesure, de commande et de régulation (RT 650.40) est disponible avec module d'interface (USB).

Ceci permet de représenter les principales grandeurs de processus ainsi que d'exécuter des fonctions de régulation et de commande.

Contenu didactique / Essais

- principes de base de la technique de régulation
- composants industriels actuels de la technique de régulation: régulateurs, transducteurs de mesure, composants de réglage
- commande et paramétrage d'un régulateur numérique moderne à grand spectre de fonctions: p. ex. paramétrage comme régulateur P, PI et PID
- étude de la réponse aux perturbations et du comportement de pilotage
- influence de différents paramètres de régulateur sur la stabilité et la qualité de régulation
- étude des caractéristiques de la boucle de régulation ouverte et fermée
- traitement ultérieur de grandeurs de processus avec des appareils externes tels que p. ex. un enregistreur ou un oscilloscope
- avec l'accessoire RT 650.40: apprentissage et application d'un logiciel de mesure, de commande et de régulation

Date d'édition: 11.12.2025

Les grandes lignes

- introduction expérimentale à la technique de régulation: exemple d'une régulation de température
- montage du système à l'aide de composants usuels dans l'industrie
- régulateur numérique dont les paramètres peuvent être choisis librement: P, I, D et toutes les combinaisons
- logiciel optionnel de mesure, de commande et de régulation RT 650.40 via USB

Les caracteristiques techniques

Réservoir

- en acier inoxydable
- volumen: 15L

Chauffage

puissance: 2kWthermostat: 20...80°C

Pompe à 3 étages

- puissance absorbée: 90W

débit de refoulement max.: 83L/minhauteur de refoulement max.: 6m

Capteur de température: Pt100: -50...400°C 2 thermomètres à cadran (à bilame): 0...80°C

2 rotamètres: 30...320L/h

Electrovanne proportionelle: Kvs: 0,8m^3^/h

Régulateur numérique, paramétrable en régulateur P, PI ou PID Grandeurs de processus comme signaux analogiques: 0...10V

Raccordement d'appareils d'enregistrement externes (p. ex. oscilloscope, enregistreur) possible via connecteurs de

laboratoire

230V, 50Hz, 1 phase

Dimensions et poids Lxlxh: 1000x500x1070mm

Poids: env. 85kg

Necessaire au fonctionnement

Raccordement d'eau fraîche env. 100L/h

Liste de livraison

1 appareil dessai

1 jeu de câbles de laboratoire

1 documentation didactique

Accessoires disponibles et options

RT650.40 - Logiciel de mesure, de commande et de régulation pour la série RT 614 à RT 674 WP300.09 - Chariot de laboratoire

Produits alternatifs

RT040 - Système de TP en régulation de température, HSI

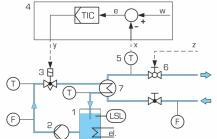
RT450.04 - Module système réglé, température

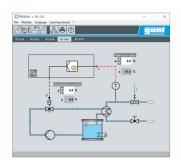
RT542 - Banc d'essai pour régulation de température

RT614 - Banc de démonstration pour régulation de niveau

RT624 - Banc de démonstration pour régu

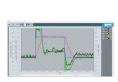
Catégories / Arborescence




Date d'édition : 11.12.2025

Techniques > Génie des Procédés > Pilotes simples en génie des procédés > Systèmes industriels de régulation

Techniques > Régulation > Bases de la régulation > Régulation de température / éclairement



Date d'édition: 11.12.2025

Ref: EWTGURT650.40

RT 650.40 Logiciel et interface USB pour série RT614-RT674

Le logiciel assiste de manière idéale le processus d'expérimentation et didactique des bancs de démonstration RT 614 à RT 674.

Ses caractéristiques principales sont le régulateur logiciel et la fonction d'enregistrement.

Le régulateur peut fonctionner comme régulateur PID paramétrable et comme régulateur 2 points.

Dans ce dernier cas, il est également possible de prescrire l'hystérésis en plus de la grandeur de référence.

La fonction d'enregistrement sert à l'enregistrement continu de grandeurs réglées, grandeurs réglantes et grandeurs de référence.

En cas de modifications des grandeurs de référence et des grandeurs perturbatrices, elle enregistre les réponses à un échelon correspondantes.

Les données de mesure peuvent être imprimées et mémorisées sur un support de données.

Le raccordement à un PC se fait via une interface USB.

Le module d'interface USB fourni est équipé d'un nombre suffisant d'entrées et sorties analogiques, de sorte que même des circuits complexes tels qu'une cascade (RT 674) peuvent être régulés.

En variante au régulateur logiciel, on peut également utiliser le régulateur du modèle de démonstration respectif.

Dans ce cas, les grandeurs réglées, grandeurs de régulation et grandeurs de référence peuvent être enregistrées, représentées et mémorisées avec la fonction d'enregistrement du logiciel.

La sélection de différentes fenêtres du logiciel permet d'une part la représentation du schéma de processus respectif avec les données correspondantes en temps réel affectées localement et d'autre part l'illustration des variations dans le temps de ces paramètres.

La manuel bien structuré, avec la description des fonctions du logiciel et de l'application pour les bancs de démonstration de technique de régulation RT 614 à RT 674 contribuent au processus d'apprentissage.

Contenu didactique / Essais

- apprentissage et application de régulations assistées par logiciel
- raccordement d'un PC à l'interface et liaison correcte de l'interface à différents processus de régulation
- mémorisation de données
- différents types de régulateur:
- -- tout ou rien, continu
- paramétrage d'un régulateur continu
- enregistrement et interprétation de réponses à un échelon
- étude de la réponse aux perturbations et le comportement de pilotage

Les grandes lignes

- régulateur logiciel avec paramètres librement réglables
- possibilité de sélection d'un régulateur continu et d'un régulateur tout ou rien
- choix de la langue
- schéma de processus avec affichage des données en temps réel
- fonction d'enregistrement

Les caracteristiques techniques

Régulateur logiciel (fonctionnement continu)

- paramétrable en régulateur P, PI ou PID
- régulation en cascade

Date d'édition: 11.12.2025

Régulateur logiciel (fonctionnement tout ou rien)

- comportement 2 points
- introduction de la grandeur de référence et de l'hystérésis

Fonction d'enregistreur avec enregistrement des données mesurées

- enregistrement et mémorisation de variations dans le temps
- interprétation de réponses à un échelon avec détermination automatique de la tangente d'inflexion

Sélection de la langue

- 4 langues présélectionnables
- 1 langue définie par l'utilisateur possible

Logiciel de base

- LabVIEW
- exigences du système: Windows Vista ou Windows 7, raccordement USB

Necessaire au fonctionnement

PC avec Windows

Liste de livraison

CD avec logiciel GUNT, 1 module d'interface USB, 1 jeu de câbles, 1 manuel avec description des fonctions du logiciel et de l'application pour les modèles de démonstration RT 614 à RT 674

Produits alternatifs

RT450.40 - Logiciel pour visualisation

RT650.60 - Logiciel de conduite de procédés pour RT 681 et RT 682

Produits alternatifs

Ref: EWTGURT454

RT 454 Régulation et contrôle de température (Réf. 080.45400)

Siemens SIMATIC S7-1200, écran tactile intégré, interface PC avec logiciel GUNT

La série dappareils RT 451 - 455 est entièrement constituée de composants industriels, offrant ainsi une introduction à la technique de régulation en lien étroit avec la pratique.

Lutilisation de capteurs intelligents permet dexpliquer les principes de base des applications de Ilndustrie 4.0. Grâce à une électronique dévaluation intégrée, les capteurs intelligents sont capables non seulement dacquérir des valeurs de mesure, mais aussi de traiter des signaux.

Outre les données de processus, léchange de données de configuration, de diagnostic ou de statistiques est ainsi possible.

En pratique, cela accélère la transformation des lignes de production ou permet dassurer un entretien prédictif, par exemple.

Le RT 454 possède tous les composants nécessaires à un circuit de régulation ouvert et fermé.

Le système réglé est représenté par une section de tuyau traversée par de leau avec des mesures de température à différentes positions.

Date d'édition: 11.12.2025

Deux sections de retard intégrées et sélectionnables permettent de représenter les temps de retard.

La température en tant que grandeur réglée est enregistrée au choix par lun des trois capteurs de température intelligents.

Un dispositif de chauffage et/ou un échangeur de chaleur avec un ventilateur comme unité de refroidissement servent dactionneur dans le circuit de régulation.

On étudie le comportement de régulation avec une régulation tout ou rien ou une régulation continue.

Le dispositif de chauffage peut fonctionner en continu.

Le ventilateur fonctionne en alternance ou en mode manuel.

Des grandeurs perturbatrices définies peuvent être générées par un robinet à tournant sphérique à entraînement motorisé.

Les capteurs de pression intelligents disposent dune interface IO-Link pour le transfert sans interférences des valeurs de mesure et léchange de données de configuration.

Le banc dessai est commandé et utilisé via IAPI intégré et lécran tactile ou par le logiciel GUNT (PC externe

Le comportement de régulation est affiché directement sous la forme de variation dans le temps.

Le logiciel compatible réseau permet de suivre et dévaluer les essais sur un nombre illimité de postes de travail via une connexion LAN/WLAN avec le réseau local.

Contenu didactique/essais

- construction et fonctionnement dune régulation de température
- étude des propriétés des circuits de régulation ouverts et fermés
- comportement de régulation avec

une régulation continue

une régulation à deux points

une régulation à trois points

des temps de retard

- étude de linfluence de la position du capteur de température sur les propriétés du système réglé
- étude de réponse à une perturbation et à la grandeur de référence
- familiarisation avec les composants industriels de la technique de régulation:

API Siemens comme régulateur numérique,

capteur de température intelligent avec interface IO-Link comme élément de mesure,

dispositif de chauffage et unité de refroidissement comme actionneurs

- familiarisation avec IIO-Link comme interface de communication pour les capteurs intelligents norme standardisée, ouverte

transfert sans interférences des valeurs de mesure

échange de données de configuration

construction du système (dispositif IO-Link, maître IO-Link, API)

Les grandes lignes

- régulation numérique de la température via IAPI
- écran tactile intégré ou PC avec logiciel GUNT comme HMI
- logiciel GUNT compatible réseau avec acquisition de données pour Remote Learning
- utilisation de capteurs intelligents, configuration via IAPI: modification, sauvegarde et transfert des paramètres pendant le fonctionnement

Caractéristiques techniques

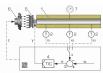
Sections de retard

- tube droit, longueur: 0,7m, Ø intérieur: 20mm
- spirale hélicoïdale, longueur: 16,5m, Ø intérieur: 10mm

API

- type: Siemens SIMATIC S7-1200
- modules: CPU compacte (8 DI, 6 DO, 2 AI), module dentrée/sortie analogique (4 AI, 2 AO), maître IO-Link
- 3 capteurs de température intelligents
- élément de mesure: Pt1000
- interface de communication:

Date d'édition: 11.12.2025


Ref: EWTGURT040

RT 040 Système de TP en régulation de température, HSI (Réf. 080.04000)

Ensemble complet: Appareil d'essai + Logiciel + Documentation pédagogique + Câble USB

Le RT 040 propose des essais de base sur un système réglé de température.

Un barreau métallique est utilisé comme système réglé.

La température du barreau métallique représente la grandeur réglée.

La température est mesurée à trois endroits différents à laide de résistances thermiques (PTC).

Une valeur mesurée à la fois est transmise au régulateur logiciel.

Les deux autres valeurs sont enregistrées.

Cela permet de représenter différents comportements du système réglé.

Le signal de sortie du régulateur est utilisé pour commander lactionneur à élément Peltier.

Lélément Peltier a un côté chaud et un côté froid.

Cela permet dalimenter le barreau métallique en puissance de chauffage ou de refroidissement.

Afin détudier linfluence de grandeurs perturbatrices, il est possible, au moyen du logiciel, de commander une soufflante qui va évacuer de lénergie thermique.

Le comportement de régulation est affiché directement sous la forme dintervalles de temps.

La température peut être lue à tout moment directement sur un thermomètre à cadran se trouvant sur le barreau métallique.

Reposant sur une intégration matériel/logiciel (HSI), le logiciel GUNT puissant est un élément central de la série dappareils.

La connexion entre lappareil dessai et le PC est assurée par une interface USB (PC externe requis).

Leffet de modifications sur le comportement du système peut être étudié rapidement et facilement à laide du logiciel.

Un programmateur intégré permet de définir des grandeurs de référence et des intervalles de temps pour réaliser des courbes de grandeurs de référence.

Dautres questions relatives à la technique de régulation peuvent être traitées à laide de simulations logicielles pour des systèmes réglés jusquau second ordre.

Le fait de combiner un système réglé réel très parlant et des simulations dautres systèmes réglés, dans la série dappareils RT 010 - RT 060, facilite la compréhension.

La préparation des essais ainsi que les simulations logicielles peuvent être effectuées dans le cadre de lapprentissage à distance.

Lobservation des essais est possible sur le réseau local, sur un nombre illimité de postes de travail.

Contenu didactique / Essais

- illustration des fondements de la technique de régulation par le biais dun système réglé de niveau
- circuit de régulation ouvert
- système réglé sans compensation
- effets de différents types de régulateurs sur le comportement de le circuit de régulation fermé
- optimisation du régulateur par le biais dune modification des paramètres de régulateur: Kp, Tn, Tv
- enregistrement des réponses à un échelon en cas de: échelon de grandeur réglante, de grandeur de référence et de grandeur perturbatrice
- limitation de la grandeur réglante et effet sur la régulation
- influence des grandeurs perturbatrices
- simulation logicielle de différents systèmes réglés (P, I, PT1, PT2)
- comparaison de différents paramètres de système réglé SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 11.12.2025

- logiciel GUNT spécifique pour toute la série dappareils
- régulateur: manuel non réglé, continu, deux ou trois points
- programmateur pour courbes de grandeurs de référence propres
- conception de régulateurs de grandeurs perturbatrices
- enregistrement dintervalles de temps
- apprentissage à distance: simulation logicielle sur un nombre de postes de travail illimité

Les grandes lignes

- illustration des relations fondamentales de la technique de régulation par le biais: système réglé de température
- régulateur logiciel configurable et paramétrable avec des fonctions étendues
- préparation des essais et simulation logicielle pour lapprentissage à distance
- suivi et évaluation des essais possibles sur le réseau local

caracteristiques techniques:

Barreau métallique chauffé avec isolation thermique

- Dxl: 20x200mm, matériau: aluminium

Elément Peltier

 puissance absorbée en fonction de la température puissance à 27°C: 38,2W puissance à 50°