

Date d'édition: 06.12.2025

Ref: EWTGUHM250.06

HM 250.06 Écoulement libre (Réf. 070.25006)

Complément nécessaire: HM 250

Dans le cas dun écoulement horizontale dun réservoir, la forme de la sortie et la vitesse de lécoulement agissent sur la trajectoire du jet deau.

En hydrodynamique, linteraction entre la trajectoire, la forme de la sortie et la vitesse de lécoulement lors de lécoulement des réservoirs sont étudiées et sont essentielles, par exemple, en génie hydraulique pour la conception des barrages.

Le HM 250.06 contient un réservoir transparent avec un écoulement horizontale dans lequel on peut installer différents inserts.

La trajectoire du jet deau qui en résulte est mesuré numériquement dans la section dessai transparente.

Une jauge de profondeur à coulisse mesure directement la trajectoire du jet deau dans 8 positions données.

Les valeurs de mesure sont transmises au module de base HM 250 et affichées sous forme de trajectoire sur lécran tactile.

Le niveau dans le réservoir est défini et contrôlé automatiquement par le module de base.

Quatre inserts pour la sortie de différents diamètres et de contour dentrée différents sont inclues dans la liste de livraison.

Le coefficient de perte de charge peut être déterminé en tant que caractéristique pour différents inserts.

Ainsi, linfluence du niveau dans le réservoir et du coefficient de perte de charge sur la trajectoire peut être étudiée dans les essais.

Laccessoire HM 250.06 se positionne facilement et en toute sécurité sur la surface de travail du module de base HM 250.

La technologie RFID est utilisée pour identifier automatiquement les accessoires, charger le logiciel GUNT approprié et effectuer la configuration automatique du système.

Linterface utilisateur intuitive quide les tests et affiche les valeurs mesurées sous forme graphique.

Lalimentation en eau et les mesures de débit et de pression sont effectuées via le module de base.

Contenu didactique / Essais

- étude de linfluence du niveau dans le réservoir sur la vitesse de lécoulement
- application de léquation de Bernoulli
- comparaison des vitesses de lécoulement réelle et théorique
- étude de inserts pour la sortie avec de différents diamètres et contour dentrée, détermination du coefficient de perte de charge
- étude de linfluence de la vitesse de lécoulement et du coefficient de perte de charge sur la trajectoire du jet deau
- application des équations de mouvement pour déterminer la trajectoire théorique
- logiciel GUNT spécifiquement adapté aux accessoires utilisés module dapprentissage avec principes théoriques de base description de lappareil préparation aux essais guidés

exécution de cet essai

Date d'édition: 06.12.2025

affichage graphique de la trajectoire

transfert de données via USB pour une utilisation externe polyvalente des valeurs mesurées et des captures décran, par exemple lévaluation dans Excel différents niveaux dutilisateurs sélectionnables

Les grandes lignes

- étude de la trajectoire en fonction du niveau dans le réservoir et de la forme de la sortie
- exécution intuitive des essais via lécran tactile (HMI)
- un routeur WLAN intégré pour lexploitation et le contrôle via un dispositif terminal et pour le "screen mirroring" sur 10 terminaux maximum: PC, tablette, smartphone
- lidentification automatique des accessoires grâce à la technologie RFID

Les caracteristiques techniques

Réservoir

- matériau: PMMA, PVC, acier inoxydable
- hauteur: 590mm - Ø intérieur: 100mm - volume: max. 4,6L
- Inserts pour la sortie
- contour arrondi: 1x Ø 4mm, 1x Ø 8mm
- contour à arêtes vives: 1x Ø 4mm, 1x Ø 8mm

Section dessai transparente

- matériau: PMMA
- 8 positions données pour la jauge de profondeur à coulisse: distance sortie deau á 1re position: 25mm, distance 2e position á 8e position: 50mm chacune

Jauge de profondeur à coulisse, numérique

- résolution: 0,01mm
- écran LCD
- sortie de données: RS 232

Plages de mesure

- jauge de profondeur à coulisse: 0?150mm - plage de mesure indiquée débit: 0?15L/min
- plage de mesure indiquée pression: 0?500mmCE

Dimensions et poids Lxlxh: 650x260x

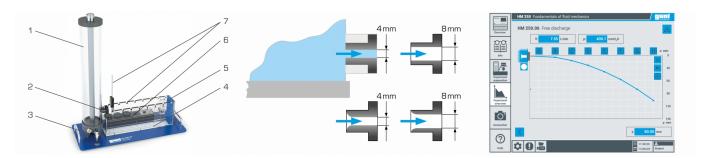
Catégories / Arborescence

Techniques > Mécanique des fluides > Principe de la dynamique des fluides > Principes de base physiques et propriétés des fluides

Techniques > Mécanique des fluides > Principe de la dynamique des fluides > Principes de base de la hydrodynamique

Techniques > Mécanique des fluides > Principe de la dynamique des fluides > Hydrodynamique

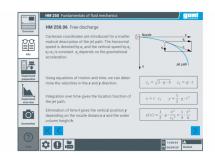
Techniques > Mécanique des fluides > Exemples d'écoulement non stationnaire


Formations > STL > Mécanique des fluides

Systèmes Didactiques s.a.r.l.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 06.12.2025


Systèmes Didactiques s.a.r.l.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 06.12.2025

Date d'édition: 06.12.2025

Options

Ref: EWTGUHM250

HM 250 Module de base pour la mécanique des fluides (Réf. 070.25000)

Complément nécessaire: HM250.01 ou 02/03/04/05/06/07/08/09/10/11

La série dappareil HM 250 "GUNT-Fluid Line" offre une approche expérimentale très complète des principes de base de la mécanique des fluides.

Le module de base HM 250 fournit le matériel de base via une technologie déconomie dénergie et deau pour chacun des essais individuels: un circuit deau fermé avec un dispositif de chauffage intégré, une surface de travail pour les différents appareils dessai et un collecteur de gouttes deau.

Pour le refroidissement de leau, des raccordements pour une alimentation en eau dun laboratoire sont inclus. Le module de base fournit également la technique de mesure, de commande et de régulation ainsi que les systèmes de communication.

Un vaste choix dappareils dessai, disponibles en tant quaccessoires offrant un cours complet sur les principes de base de la mécanique des fluides.

Les accessoires se positionnent facilement et en toute sécurité sur la surface de travail du module de base.

Une fois mis en place, le module de base identifie laccessoire respectif grâce à une interface RFID électronique sans contact, sélectionne automatiquement le logiciel approprié dans IAPI et effectue la configuration automatique du système.

Lappareils dessai est commandé par un écran tactile avec une interface utilisateur intuitive.

Cela comprend une préparation dessai guidée pour le raccordement des différents éléments des accessoires ainsi guune purge dair automatique des sections dessai et des raccords de mesure de pression.

De plus, des modules dapprentissage avec principes théoriques de base aux différentes thématiques des essais sont affichés.

Une fonction daide est disponible pour lexécution des essais, qui visualise lexécution en différentes étapes.

Les valeurs de mesure sont affichées graphique sur linterface utilisateur de lécran tactile.

Les valeurs de mesure peuvent être transmises via une interface USB à un PC et ensuite être lues et enregistrées sur le PC (par ex. sous MS Excel).

Grâce à un routeur WLAN intégré, lappareils dessai peut en outre être commandée et exploitée par un dispositif terminal et linterface utilisateur peut être affichée sur 10 terminaux au maximum ("screen mirroring").

Date d'édition : 06.12.2025

Contenu didactique / Essais

- logiciel GUNT avec des contenus adaptés aux différents accessoires avec info:

description de lappareil et module dapprentissage avec principes théoriques de base préparation de lessai: montage expérimental guidé et purge dair automatique de section dessai aperçu de lessai: enregistrement digital des valeurs de mesure avec affichage graphique prendre des captures décran

fonction daide détaillée pour lexécution dessai

transfert de données via USB pour une utilisation externe polyvalente des valeurs mesurées et des captures décran

- "screen mirroring", mise en miroir de linterface utilisateur sur 10 terminaux maximum navigation dans le menu indépendante de la surface affichée sur lécran tactile du module de base différents niveaux dutilisateurs sélectionnables sur le terminal: pour lobservation des essais ou pour la commande et lutilisation de lappareil dessai avec affichage de valeurs additionnelles

Les grandes lignes

- exécution intuitive des essais via lécran tactile (HMI)
- un routeur WLAN intégré pour lexploitation et le contrôle via un dispositif terminal et pour le "screen mirroring" sur 10 terminaux maximum: PC, tablette, smartphone
- lidentification automatique des accessoires grâce à la technologie RFID
- techniques déconomie dénergie et deau, montage peu encombrante

Les caracteristiques techniques

Pompe

- puissance absorbée: 50W

débit de refoulement max.: 15L/minhauteur de refoulement max.: 12m

Pompe, purge dair

- puissance absorbée: 25W

débit de refoulement max.: 10L/minhauteur de refoulement max.: 5m

Dispositif de chauffage - puissance absorbée: 800W Réservoir de stockage - volume: env. 10L

Plages de mesure - débit: 0?15L/min

Ref: EWTGUHM250.90

HM 250.90 Chariot avec étagères pour mécanique des fluides série HM 250 (Réf. 070.25090)

Létagère de laboratoire robuste permet de stocker de manière pratique les appareils dessai et de les transporter si nécessaire dun endroit à un autre.

Les étagères sont coulissantes, offrant ainsi une bonne visibilité densemble et un accès rapide aux appareils.

Létagère du laboratoire a une paroi arrière solide, elle est très stable et faite de métal en poudre.

Les fonctions de sécurité garantissent un transport et un stationnement sûrs de létagère du laboratoire.

Les freins sur les roulettes lempêchent de rouler.

Grâce à la fonction dencliquetage des tablettes, une seule tablette peut être retirée à la fois, de sorte que SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 06.12.2025

létagère a toujours une position ferme.

Contenu didactique / Essais

Les grandes lignes

- étagère robuste et sûre pour stockage de la série HM 250
- tablettes coulissantes avec fonction de verrouillage

Les caracteristiques techniques

Étagère de laboratoire

- tablettes coulissantes: 6x Lxlxh: 670x568x344mm, 1x Lxlxh: 670x568x744mm
- matériau: acier, en poudre
- 4 roulettes freinables

Dimensions et poids

Lxlxh: 1538x790x1903mm

Poids: env. 231kg

Liste de livraison

1 étagère de laboratoire

Accessoires

en option

HM 250 Principes de base de la mécanique des fluides

HM 250.01 Visualisation de lécoulement tubulaire

HM 250.02 Mesure du profil découlement

HM 250.03 Visualisation de lignes de courant

HM 250.04 Loi de la continuité

HM 250.05 Mesure des forces de jet

HM 250.06 Écoulement libre

HM 250.07 Théorème de Bernoulli

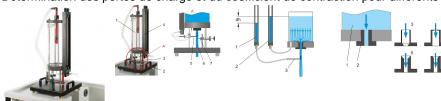
HM 250.08 Pertes dans les éléments de tuyauterie

HM 250.09 Principes de base du frottement du tube

HM 250.10 Évolution de la pression le long de la section d'entrée

HM 250.11 Canal ouvert

Produits alternatifs



Date d'édition: 06.12.2025

Ref: EWTGUHM150.12

HM 150.12 Vidange verticale d'un réservoir (Réf. 070.15012)

Détermination des pertes de charge et du coefficient de contraction pour différents profils de sorti

Les pertes de charge lors de la vidange sont liées principalement à deux processus: la déviation du jet à lentrée dans lorifice et le frottement des parois dans lorifice.

Les pertes de charge font que le débit volumétrique sortant est inférieur à ce quil pourrait être en théorie.

Avec le HM 150.12, on calcule ces pertes à différents débits.

Lappareil dessai comprend un réservoir transparent, un dispositif de mesure ainsi quun tube de Pitot et un manomètre à deux tubes.

Pour létude de différents orifices, on fixe un insert interchangeable dans la sortie deau du réservoir.

Cinq inserts ayant des diamètres et des profils dentrée et de sortie différents sont inclus dans la liste de livraison.

Un dispositif de mesure permet deffectuer les relevés relatifs au jet de sortie.

Un tube de Pitot enregistre la pression totale de lécoulement.

Le différentiel de pression relevé par le manomètre sert à déterminer la vitesse.

En outre, il est possible de déterminer le coefficient découlement comme caractéristique des profils différents.

Le réservoir est équipé dun trop-plein et dun point de mesure de la pression statique.

Au moyen dune vanne darrêt à lentrée, le niveau peut être ajusté de manière précise et être relevé sur le manomètre. Lappareil dessai est positionné aisément et en toute sécurité, sur le plan de travail du module de base HM 150.

Lalimentation en eau et la mesure du débit se font au moyen du HM 150.

Lappareil dessai peut être également utilisé sur le réseau du laboratoire.

Pour analyser virtuellement le comportement de lécoulement, on utilise souvent dans la pratique des simulations CFD. Elles permettent par exemple de visualiser lécoulement dans des zones qui ne peuvent pas être visualisées via lessai.

Dans le GUNT Media Center, des visualisations découlement basées sur des calculs CFD sont disponibles en ligne. Des matériels didactiques multimédias sont également disponibles, y compris un cours dapprentissage en ligne sur la connaissance de base et des calculs.

Des vidéos présentent un essai complet avec la préparation, lexécution et lévaluation.

Des feuilles de travail accompagnées des solutions complètent le matériel didactique.

Contenu didactique / Essais

- équation de Torricelli
- déterminer lévolution dans le temps du niveau
- déterminer les durées dévacuation
- études au niveau du jet de sortie (diamètre, vitesse)
- détermination du débit à différentes hauteurs découlement
- déterminer les coefficients de perte
- coefficient découlement
- coefficient de vitesse
- coefficient de contraction

GUNT Media Center, développement des compétences numériques

- cours dapprentissage en ligne avec connaissances de base et calculs
- simulations CFD préparées pour la visualisation de lécoulement
- vidéos avec présentation détaillée des essais: préparation, exécution, évaluation
- succès dapprentissage assuré grâce aux feuilles de travail numériques
- acquisition dinformations sur des réseaux numériques SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 06.12.2025

Les grandes lignes

- détermination du diamètre et de la vitesse du jet de sortie
- étude dorifices avec différents profils dentrée et de sortie
- visualisation de lécoulement à laide de la technique CFD
- matériel didactique multimédia en ligne dans le GUNT Media Center: cours dapprentissage en ligne, simulations CFD préparées, feuilles de travail, vidéos

Caractéristiques techniques

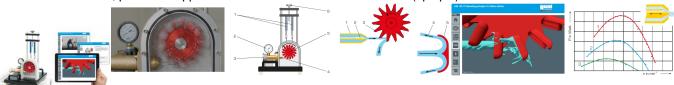
Réservoir

- contenu: env. 11L

- hauteur du trop-plein: max. 400mm

- débit max.: 14L/min

Inserts


Diamètre intérieur: d1=entrée, d2=sortie - 1x alésage cylindrique, d1= d2=12mm

- 1x sortie de l

Ref: EWTGUHM150.19

HM 150.19 Fonctionnement d'une turbine Pelton avec tuyère réglable (Réf. 070.15019)

Nécessite le HM 150, prévoir un appareil de mesure de la vitesse de rotation (optique)

La turbine Pelton fait partie des turbines à jet libre qui transforment lénergie de pression de leau, entièrement en énergie cinétique au sein du distributeur.

Pendant ce processus, le jet deau est accéléré dans une tuyère et est dirigé sur les aubes de la roue Pelton dune manière tangentielle.

Dans les aubes, le jet deau est dévié à presque 180°.

Limpulsion du jet deau est transmise à la roue Pelton.

Le HM 150.19 est le modèle dune turbine Pelton qui sert à présenter le fonctionnement dune turbine à action.

Lappareil dessai se compose de la roue Pelton, de la tuyère à aiguille utilisée comme distributeur, dun frein à bande pour solliciter la turbine et dun carter avec paroi frontale transparente.

Ainsi, on peut observer lécoulement de leau, la roue Pelton et la tuyère pendant lopération.

En ajustant laiguille de la tuyère, on modifie la section transversale de la tuyère et donc le débit.

Le couple de rotation de la turbine est déterminé à partir de la mesure de force au frein à bande.

Pour mesurer la vitesse de rotation, il faut un capteur de vitesse de rotation sans contact, p. ex. HM 082.

Un manomètre affiche la pression de leau à lentrée de la turbine.

Lappareil dessai est positionné sur le plan de travail du module de base HM 150 dune manière simple et conforme à la sécurité.

Lalimentation en eau et détermination du débit sont également réalisée par HM 150.

Alternativement, lappareil dessai peut aussi être opéré par le réseau du laboratoire.

Pour analyser virtuellement le comportement de lécoulement, on utilise souvent dans la pratique des simulations CFD. Elles permettent par exemple de visualiser lécoulement dans des zones qui ne peuvent pas être visualisées via lessai.

Dans le GUNT Media Center, des visualisations découlement basées sur des calculs CFD sont disponibles en ligne. Des matériels didactiques multimédias sont également disponibles, y compris un cours dapprentissage en ligne sur la connaissance de base et des calculs.

Des vidéos présentent un essai complet avec la préparation, lexécution et lévaluation.

Des feuilles de travail accompagnées des solutions complètent le matériel didactique. SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 06.12.2025

Contenu didactique / Essais

- la structure et le fonctionnement dune turbine Pelton
- détermination du couple de rotation, de la puissance et du rendement
- représentation graphique des courbes caractéristiques pour le couple de rotation, la puissance et le rendement GUNT Media Center, développement des compétences numériques
- cours dapprentissage en ligne avec connaissances de base et calculs
- simulations CFD préparées pour la visualisation de lécoulement
- vidéos avec présentation détaillée des essais: préparation, exécution, évaluation
- succès dapprentissage assuré grâce aux feuilles de travail numériques
- acquisition dinformations sur des réseaux numériques

Les grandes lignes

- modèle dune turbine à jet libre Pelton
- zone de travail visible
- tuyère avec section transversale ajustable
- visualisation de lécoulement à laide de la technique CFD
- matériel didactique multimédia en ligne dans le GUNT Media Center: cours dapprentissage en ligne, simulations CFD préparées, feuilles de travail, vidéos

Les caractéristiques techniques

Turbine Pelton

- puissance: 5W à 500min^-1^, env. 30L/min, H=2m
- roue Pelton: 14 aubes, largeur de l'aube: 33,5mm, diamètre extérieur: 132mm

Tuyère à aiguille

- diamètre du jet: 10mm

Plages de mesure

- force de freinage (balance à ressort): 10N

- pression: 0...1bar

Dimensions et poids Lxlxh: 400x400x620mm

Poids: env. 15kg

Nécessaire au fonctionnement

HM 150 (circuit deau fermé) ou raccord deau, drain;

PC ou accès en ligne recommandé

Liste de livraison

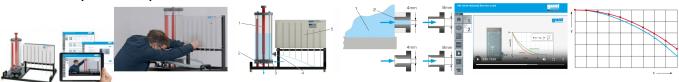
1 appareil dessai

1 documentation didactique

1 accès en ligne au GUNT Media Center

Accessoires disponibles et options

HM082 - Capteur de vitesse de r



Date d'édition: 06.12.2025

Ref: EWTGUHM150.09

HM 150.09 Vidange horizontale d'un réservoir (Réf. 070.15009)

Tracé de la trajectoire d'un jet d'eau avec différentes vitesses de sortie

En hydrodynamique, dans le cas dune vidange horizontale par des orifices, on observe le rapport entre la parabole de la trajectoire, le contour de sortie et la vitesse de sortie.

Le HM 150.09 permet détudier et de visualiser lévolution dun jet deau.

En outre, il est possible de déterminer le coefficient découlement en tant que trait caractéristique de différents contours.

Lappareil dessai comprend un réservoir transparent et un dispositif palpeur avec échelle de visualisation des évolutions des jets.

Un insert interchangeable est intégré à la sortie deau du réservoir afin de pouvoir étudier différents orifices.

Quatre inserts avec des diamètres et contours différents sont intégrés à la liste de livraison.

Lors de la visualisation, la trajectoire du jet deau de sortie est enregistrée au moyen dun dispositif palpeur constitué de barres mobiles.

Les barres sont positionnées en fonction de lévolution du jet deau.

A laide de léchelle, on peut déterminer la trajectoire. Le réservoir contient un trop-plein ajustable et une échelle graduée.

Ce qui rend possibles lajustage et le relevé précis du niveau.

Lappareil dessai est positionné aisément et en toute sécurité, sur le plan de travail du module de base HM 150. Lalimentation en eau et la mesure du débit se font au moyen du HM 150.

Lappareil dessai peut être également utilisé sur le réseau du laboratoire.

Pour analyser virtuellement le comportement de lécoulement, on utilise souvent dans la pratique des simulations CFD. Elles permettent par exemple de visualiser lécoulement dans des zones qui ne peuvent pas être visualisées via lessai.

Dans le GUNT Media Center, des visualisations découlement basées sur des calculs CFD sont disponibles en ligne. Des matériels didactiques multimédias sont également disponibles, y compris un cours dapprentissage en ligne sur la connaissance de base et des calculs.

Des vidéos présentent un essai complet avec la préparation, lexécution et lévaluation.

Des feuilles de travail accompagnées des solutions complètent le matériel didactique.

Contenu didactique / Essais

- équation de Torricelli
- déterminer lévolution dans le temps du niveau
- déterminer les durées dévacuation
- déterminer la trajectoire du jet deau en fonction de différentes vitesses de sortie différents orifices
- déterminer les coefficients de perte coefficient découlement coefficient de vitesse coefficient de contraction

GUNT Media Center, développement des compétences numériques

- cours dapprentissage en ligne avec connaissances de base et calculs
- simulations CFD préparées pour la visualisation de lécoulement
- vidéos avec présentation détaillée des essais: préparation, exécution, évaluation
- succès dapprentissage assuré grâce aux feuilles de travail numériques SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition : 06.12.2025

- acquisition dinformations sur des réseaux numériques

Les grandes lignes

- visualisation de la trajectoire dun jet de sortie
- étude dorifices avec différents diamètres et contours
- visualisation de lécoulement à laide de la technique CFD
- matériel didactique multimédia en ligne dans le GUNT Media Center: cours dapprentissage en ligne, simulations CFD préparées, feuilles de travail, vidéos

Les caractéristiques techniques

Réservoir

hauteur: 510mmdiamètre: 190mmcontenu: ca. 13,5L

Éléments avec contour arrondi

1x diamètre: 4mm1x diamètre: 8mm

Éléments avec contour angulaire

1x diamètre: 4mm1x diamètre: 8mm

Dispositif palpeur, 8 barres mobiles

- longueur: 350mm

Dimensions et poids Lxlxh: 870x640x700mm

Poids: env. 26k