

Date d'édition: 06.12.2025

Ref: EWTGUHM150.19

HM 150.19 Fonctionnement d'une turbine Pelton avec tuyère réglable (Réf. 070.15019)

Nécessite le HM 150, prévoir un appareil de mesure de la vitesse de rotation (optique)

La turbine Pelton fait partie des turbines à jet libre qui transforment lénergie de pression de leau, entièrement en énergie cinétique au sein du distributeur.

Pendant ce processus, le jet deau est accéléré dans une tuyère et est dirigé sur les aubes de la roue Pelton dune manière tangentielle.

Dans les aubes, le jet deau est dévié à presque 180°.

Limpulsion du jet deau est transmise à la roue Pelton.

Le HM 150.19 est le modèle dune turbine Pelton qui sert à présenter le fonctionnement dune turbine à action.

Lappareil dessai se compose de la roue Pelton, de la tuyère à aiguille utilisée comme distributeur, dun frein à bande pour solliciter la turbine et dun carter avec paroi frontale transparente.

Ainsi, on peut observer lécoulement de leau, la roue Pelton et la tuyère pendant lopération.

En ajustant laiguille de la tuyère, on modifie la section transversale de la tuyère et donc le débit.

Le couple de rotation de la turbine est déterminé à partir de la mesure de force au frein à bande.

Pour mesurer la vitesse de rotation, il faut un capteur de vitesse de rotation sans contact, p. ex. HM 082.

Un manomètre affiche la pression de leau à lentrée de la turbine.

Lappareil dessai est positionné sur le plan de travail du module de base HM 150 dune manière simple et conforme à la sécurité.

Lalimentation en eau et détermination du débit sont également réalisée par HM 150.

Alternativement, lappareil dessai peut aussi être opéré par le réseau du laboratoire.

Pour analyser virtuellement le comportement de lécoulement, on utilise souvent dans la pratique des simulations CFD. Elles permettent par exemple de visualiser lécoulement dans des zones qui ne peuvent pas être visualisées via lessai.

Dans le GUNT Media Center, des visualisations découlement basées sur des calculs CFD sont disponibles en ligne. Des matériels didactiques multimédias sont également disponibles, y compris un cours dapprentissage en ligne sur la connaissance de base et des calculs.

Des vidéos présentent un essai complet avec la préparation, lexécution et lévaluation.

Des feuilles de travail accompagnées des solutions complètent le matériel didactique.

Contenu didactique / Essais

- la structure et le fonctionnement dune turbine Pelton
- détermination du couple de rotation, de la puissance et du rendement
- représentation graphique des courbes caractéristiques pour le couple de rotation, la puissance et le rendement GUNT Media Center, développement des compétences numériques
- cours dapprentissage en ligne avec connaissances de base et calculs
- simulations CFD préparées pour la visualisation de lécoulement
- vidéos avec présentation détaillée des essais: préparation, exécution, évaluation
- succès dapprentissage assuré grâce aux feuilles de travail numériques
- acquisition dinformations sur des réseaux numériques

Date d'édition: 06.12.2025

Les grandes lignes

- modèle dune turbine à jet libre Pelton
- zone de travail visible
- tuyère avec section transversale ajustable
- visualisation de lécoulement à laide de la technique CFD
- matériel didactique multimédia en ligne dans le GUNT Media Center: cours dapprentissage en ligne, simulations CFD préparées, feuilles de travail, vidéos

Les caractéristiques techniques

Turbine Pelton

- puissance: 5W à 500min^-1^, env. 30L/min, H=2m
- roue Pelton: 14 aubes, largeur de l'aube: 33,5mm, diamètre extérieur: 132mm

Tuyère à aiguille

- diamètre du jet: 10mm

Plages de mesure

- force de freinage (balance à ressort): 10N
- pression: 0...1bar

Dimensions et poids

Lxlxh: 400x400x620mm

Poids: env. 15kg

Nécessaire au fonctionnement

HM 150 (circuit deau fermé) ou raccord deau, drain;

PC ou accès en ligne recommandé

Liste de livraison

1 appareil dessai

1 documentation didactique

1 accès en ligne au GUNT Media Center

Accessoires disponibles et options

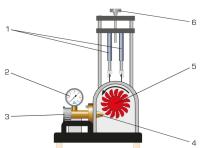
HM082 - Capteur de vitesse de r

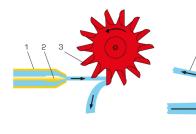
Catégories / Arborescence

Techniques > Mécanique des fluides > Principe de la dynamique des fluides > Turbomachines Techniques > Mécanique des fluides > Machines motrices > Turbines hydrauliques - Pelton

Techniques > Mécanique des fluides > Principe de la dynamique des fluides > Turbomachines

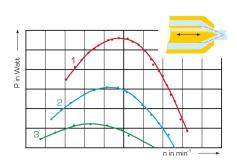
Techniques > Energie Environnement > Hydraulique - Eolien > Énergie hydraulique




Systèmes Didactiques s.a.r.l.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 06.12.2025



Date d'édition: 06.12.2025

Options

Ref: EWTGUHM150

HM 150 Module de base pour essais de mécanique des fluides (Réf. 070.15000)

Support et alimentation en eau (circuit fermé) pour module HM150.XX, mesure de débit volumétriques

La série d'appareils HM 150 délivre un grand aperçu des essais expérimentaux élémentaires pouvant être réalisés en mécanique des fluides.

Pour les besoins individuels, le module de base HM 150 fournit l'essentiel: l'alimentation en eau dans un circuit fermé; la détermination du débit volumétrique, ainsi que le positionnement de l'appareil sur le plan de travail du module de base et la collecte de l'eau d'égouttement.

Le circuit d'eau fermé est constitué d'un réservoir de stockage sous-jacent équipé d'une pompe submersible puissante et d'un réservoir de mesure placé au-dessus et destiné à collecter l'eau en sortie.

Le réservoir de mesure a plusieurs niveaux, adaptés aux petits et grands débits volumétriques.

Pour les très petits débits volumétriques, on utilise un bécher de mesure.

Les débits volumétriques sont déterminés à l'aide d'un chronographe.

Le plan de travail placé en haut permet de bien positionner les différents appareils.

Date d'édition: 06.12.2025

Un canal d'essais est intégré au plan de travail. Il est prévu pour les essais réalisés avec des déversoirs (HM 150.03).

Les grandes lignes

- Alimentation en eau des appareils d'essai utilisés en mécanique des fluides
- Mesure du débit volumétrique pour de grands et petits débits
- Les nombreux accessoires permettent de réaliser un cours de formation élémentaire complet en mécanique des fluides

Les caracteristiques techniques

Pompe

- puissance absorbée: 250W

débit de refoulement max.: 150L/minhauteur de refoulement max.: 7,6m

Réservoir de stockage, contenu: 180L

Réservoir de mesure

pour grands débits volumétriques: 40Lpour petits débits volumétriques: 10L

Canal

- Lxlxh: 530x150x180mm

Bécher de mesure gradué pour les très petits débits volumétriques

- contenu: 2L

Chronographe

- plage de mesure: 0...9h 59min 59sec

Dimensions et poids

Lxlxh: 1230x770x1070mm

Poids: env. 85kg

Necessaire au fonctionnement

230V, 50/60Hz

Liste de livraison

1 module de base

1 chronomètre

1 gobelet gradué

1 jeu daccessoires

1 notice

Accessoires disponibles et options:

Principes de base de la hydrostatique

HM 150.02 Étalonnage des appareils de mesure de pression

HM 150.05 Pression hydrostatique dans des liquides

HM 150.06 Stabilité des corps flottants

HM 150.39 Corps flottants pour HM 150.06

Principes de base de la hydrodynamique

HM 150.07 Théorème de Bernoulli

HM 150.08 Mesure des forces de jet

HM 150.09 Vidange horizontale d'un réservoir

HM 150.12 Vidange verticale d'un réservoir

HM 150.14 Formation de tourbillons

HM 150.18 Essai dOsborne Reynolds

Date d'édition: 06.12.2025

Écoulement dans les conduites

HM 150.01 Pertes de charge linéaires en écoulement laminaire / turbulent

HM 150.11 Pertes de charge dans un système de conduites

HM 150.29 Perte d'énergie dans des éléments de tuyauterie

HM 150.13 Principes de base de la mesure de débit

Écoulement dans des canaux à surface libre

HM 150.03 Déversoirs à paroi mince pour HM 150

HM 150.21 Visualisation de lignes de courant dans un canal ouvert

Ecoulement autour de corps

HM 150.10 Visualisation de lignes de courant

Machines à fluide

HM 150.04 Pompe centrifuge

HM 150.16 Montage en série et en parallèle de pompes

HM 150.19 Principe de fonctionnement d'une turbine Pelton

HM 150.20 Principe de fonctionnement d'une turbine Francis

Écoulement non stationnaire

HM 150.15 Bélier hydraulique - refoulement réalisé à laide de coups de bélier

Ref: EWTGUHM082

HM 082 Capteur de vitesse de rotation (Réf. 070.08200)

Le capteur de vitesse de rotation est un accessoire en option pour mesurer la vitesse de rotation pour la turbine Pelton HM 150.19 et la turbine Francis HM 150.20.

La vitesse de rotation est mesurée sans contact avec linstrument portatif.

Une surface réfléchissante est fixée sur lune des pièces en mouvement de la turbine.

Un capteur optique dans lappareil de mesure détecte le contraste lumière-obscurité et enregistre la vitesse de rotation indiquée sur laffichage numérique.

Les grandes lignes

- capteur de vitesse de rotation utilisé comme accessoire en option pour les turbines hydrauliques HM 150.19 et HM 150.20
- instrument portatif

Caractéristiques techniques

Affichage numérique: 5 chiffres, LCD

Plages de mesure

vitesse de rotation: 5?99999min-1

Dimensions et poids

Date d'édition : 06.12.2025

Lxlxh: 160x58x39mm Poids: env. 0,3kg

Liste de livraison

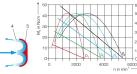
1 capteur de vitesse de rotation

1 jeu daccessoires

1 notice

Produits alternatifs

Ref: EWTGUHM289


HM 289 Essais sur une turbine Pelton (Réf. 070.28900)

Nécessite le banc HM 290

Les turbines Pelton font partie des turbines à action.

Elles sont entraînées par des buses à jet libre.

Leau est fortement accélérée dans les buses.

Cest la pression atmosphérique qui règne à la sortie des buses.

Lappareil dessai est placé sur lunité dalimentation HM 290.

En association avec lunité dalimentation, il est possible de réaliser des essais de base permettant détudier le comportement en service et de déterminer les grandeurs caractéristiques principales des turbines Pelton.

Le jet deau est accéléré dans une buse et atteint tangentiellement la roue Pelton.

Le jet deau est dévié à pratiquement 180° dans les aubes situées à la périphérie de la roue Pelton.

Limpulsion du jet deau est transmise à la roue Pelton.

Une simulation logicielle simplifiée montre la trajectoire dune particule de fluide à travers la turbine.

HM 289 est composé dune roue Pelton et dune tuyère à aiguille, intégrées dans un boîtier transparent.

Lajustage de la tuyère à aiguille peut être modifié en service.

Un dispositif de charge se trouve en dehors du boîtier.

Spécialement développé par GUNT, le frein à courants de Foucault finement ajustable et sans usure assure une charge bien définie.

Le couple fourni par la turbine est déterminé par un capteur de charge électronique.

La vitesse de rotation est mesurée par un capteur de vitesse de rotation optique.

Les valeurs de mesure sont transmises à lunité dalimentation HM 290.

Lalimentation en eau et la mesure du débit sont assurées par lunité dalimentation HM 290.

Un régulateur de pression intégré au HM 290 permet denregistrer des caractéristiques de hauteur de chute constante.

Le logiciel GUNT du HM 290 présente tous les avantages offerts par la réalisation et lévaluation dessais assistées par ordinateur.

Date d'édition: 06.12.2025

Contenu didactique / Essais

- principe de fonctionnement d'une turbine Pelton
- caractéristique à une hauteur de chute constante rapport entre le couple et la vitesse de rotation rendement en fonction de la vitesse de rotation débit en fonction de la vitesse de rotation puissance hydraulique et mécanique en fonction de la vitesse de rotation
- évaluation des valeurs de mesure et des caractéristiques en se basant sur la théorie
- comportement en charge partielle avec régulation par l'aiguille en comparaison avec une régulation par étranglement

Les grandes lignes

- Modèle illustratif d'une turbine à jet libre
- Frein à courants de Foucault ajustable, sans usure, pour la charge de la turbine
- Logiciel GUNT pour l'acquisition des données, la visualisation et la commande
- Élément des machines à fluide GUNT-Labline

Les caractéristiques techniques

Turbine

- puissance: env. 70W à 2700min ^-1^

- diamètre de la roue: 70mm

Plages de mesure

- couple: 0...0,5Nm

- vitesse de rotation: 0...9000min ^-1^

Dimensions et poids Lxlxh: 350x250x300mm

Poids: env. 5kg

Liste de livraison

1 appareil d'essai

1 documentation didactique

Accessoires disponibles et options

HM290 - Unité dalimentation pour turbines

Produits alternatifs

HM150.19 - Principe de fonctionnement d'une turbine Pelton

HM287 - Essais sur une turbine axiale

HM288 - Essais sur une turbine à réaction

HM291 - Essais sur une turbine à action

HM365.31 - Turbine Pelton et turbine Francis

HM450.01 - Turbine Pelton

Date d'édition : 06.12.2025

Ref: EWTGUHM365.31

HM 365.31 Turbine Pelton et turbine Francis pour HM 365.32 (Réf. 070.36531)

Nécessite le HM 365.32 Unité d'alimentation pour turbines

Les turbines à eau sont des turbomachines qui servent à utiliser l'énergie hydraulique.

Elles transforment l'énergie de pression et l'énergie d'écoulement en énergie mécanique et sont utilisées pour la plupart pour l'entraînement de génératrices.

Les turbines à eau peuvent être divisées en turbines à action et turbines à réaction selon leur mode de fonctionnement.

Les accessoires HM 365.31 contiennent une turbine Pelton comme exemple d'une turbine à action ainsi qu'une turbine Francis comme turbine à réaction.

Les deux types de turbines sont examinés et comparés en combinaison avec le module d'alimentation pour turbines HM 365.32 et le dispositif de freinage HM 365.

L'unité de freinage permet d'aiuster des vitesses de rotation ou des couples de rotation constants.

Ainsi, vous pouvez conduire des essais dans des modes d'opération réels différents.

La turbine Pelton est une turbine à jet libre qui transforme l'énergie de pression de l'eau en énergie cinétique complètement dans le distributeur.

Comme la différence de pression totale est diminuée seulement dans la tuyère, la pression dans la roue Pelton reste constante. Cette turbine est également appelée "turbine à action".

La puissance de la turbine est ajustée par l'ajustage de la section transversale de la tuyère.

La turbine Francis transforme l'énergie de pression de l'eau en énergie cinétique dans le distributeur et dans le rotor.

La pression à l'entrée du rotor est plus haute qu'à la sortie.

La puissance de la turbine est ajustée par l'ajustage des aubes directrices.

L'alimentation en eau, la mesure de la pression à l'entrée des turbines et la mesure de l'écoulement sont réalisées par HM 365.32.

Pour mesurer la pression à la sortie de la turbine, la turbine Francis est équipée d'un capteur de pression additionnel.

Le couple de freinage et la vitesse de rotation sont mesurés par le dispositif de freinage HM 365.

La documentation didactique bien structurée expose les principes de base et guide létudiant dans la réalisation des essais.

Contenu didactique / Essais

En combinaison avec HM 365 et HM 365.32

- comparaison entre turbine à action et turbine à réaction
- détermination de la puissance mécanique et hydraulique
- détermination du rendement
- enregistrement des courbes caractéristiques
- influence de la section transversale de la tuyère de la turbine Pelton sur les caractéristiques
- influence de la position des aubes directrices de la turbine Francis sur les caractéristiques

Les grandes lignes

- Comparaison entre une turbine à action et une turbine à réaction
- Possibilité d'ajuster des vitesses de rotation et des couples de rotation constants en combinaison avec HM 365
- Élément de la série GUNT-FEMLine

Les caractéristiques techniques Rapport de transmission frein/turbine 1,44:1 Turbine Pelton

Date d'édition: 06.12.2025

- puissance: 1,5kW à 2750min ^-1^ à 6,5bar

diamètre de la roue: 165mmajustage variable de la tuyère

Turbine Francis

- puissance: 1kW à 3500min ^-1^ et 4,2bar

- diamètre du rotor: 80mm

- position variable des aubes directrices

Plages de mesure

- pression (à la sortie de la turbine Francis): 0...1,6bar

Dimensions et poids

Lxlxh: 590x370x490mm (turbine Pelton)

Poids: env. 25kg

Lxlxh: 560x510x400mm (turbine Francis)

Poids: env. 50kg

Nécessaire au fonctionnement HM 365.32 (circuit d'eau fermé)

Liste de livraison

1 turbine Pelton

1 turbine Francis

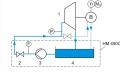
Accessoires disponibles et options

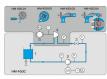
HM365 - Dispositif de freinage et d'entraînement universel

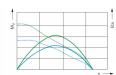
HM365.32 - Unité d'alimentation pour turbines

Produits alternatifs

HM450.01 - Turbine Pelton HM450.02 - Turbine Francis


Ref: EWTGUHM450.01


HM 450.01 Turbine Pelton (Réf. 070.45001) complément au banc HM 450C


Modèle d'une turbine à jet libre; détermination de la vitesse de rotation et du couple

La turbine Pelton fait partie des turbines à jet libre qui transforment l'énergie de pression de l'eau en énergie cinétique entièrement au sein du distributeur.

Les turbines Pelton sont utilisées à des hauteurs de chute élevées et des débits d'eau relativement faibles.

La puissance de la turbine est ajustée par la section transversale de la tuyère.

En pratique, les turbines Pelton sont utilisées pour entraîner les alternateurs synchrones où elles fonctionnent à des vitesses de rotations constantes.

La turbine Pelton HM 450.01 fait partie des accessoires du banc d'essai HM 450C.

L'appareil d'essai se compose de la roue Pelton, de la tuyère à aiguille utilisée comme distributeur, d'un frein à bande pour solliciter la turbine et d'un carter avec paroi frontale transparente.

Ainsi, on peut observer l'écoulement d'eau, le rotor et la tuyère pendant le fonctionnement. SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 06.12.2025

En ajustant l'aiguille de la tuyère, on modifie la section transversale de la tuyère et ainsi le débit.

La pression à l'entrée de la turbine est mesurée au moyen d'un capteur de pression.

Un capteur de pression et un capteur de vitesse de rotation se trouvent au niveau du frein à bande.

Ainsi, il est possible de déterminer la puissance mécanique rendue par la turbine.

La vitesse de rotation, le couple et la pression sont affichés sur le coffret de commande de HM 450C et traités ultérieurement par le logiciel.

L'alimentation en eau et la mesure du débit sont réalisées par HM 450C.

La documentation didactique bien structurée expose les principes de base et guide létudiant dans la réalisation des essais.

Contenu didactique / Essais

- détermination de la puissance mécanique
- détermination du rendement
- enregistrement des courbes caractéristiques
- étude de l'influence de la section transversale de la tuyère sur la puissance

Les grandes lignes

- Turbine Pelton avec zone de travail visible
- Circuit d'eau fermé et logiciel pour le traitement des données en utilisation avec le banc d'essai HM 450C

Les caracteristiques techniques

Turbine

- puissance: env. 350W à 1000min ^-1^, 150L/min,

H=20m

- vitesse de rotation max.: 1500min ^-1^

- roue Pelton

14 aubes

diamètre moyen: 165mm

Plages de mesure

- couple: 0...9,81Nm - pression: 0...4bar abs.

- vitesse de rotation: 0...4000min ^-1^

Dimensions et poids Lxlxh: 600x490x410mm

Poids: env. 27kg

Liste de livraison

1 appareil d'essai

1 documentation didactique

Accessoires disponibles et options

HM450C - Grandeurs caractéristiques des turbomachines hydrauliques

Produits alternatifs

HM150.19 - Principe de fonctionnement d'une turbine Pelton

HM289 - Essais sur une turbine Pelton

HM365.31 - Turbine Pelton et turbine Francis