

Date d'édition: 06.12.2025

Ref: EWTGUET805.50

ET 805.50 Détermination du titre de la vapeur avec calorimètre à séparation (Réf. 061.80550)

ou calorimètre à étranglement avec détente de la vapeur

Le titre de la vapeur x est un rapport sans dimension compris entre 0 et 1.

Il est le résultat du quotient de la masse de vapeur par la masse totale.

La masse totale est le résultat de la somme de la masse liquide et de la masse de vapeur.

Avec un titre de la vapeur de x=0, le milieu d'évaporation est entièrement en phase liquide, avec x=1, la vapeur est sèche et saturée; et entre les deux, le système se trouve sous forme de vapeur humide avec une fraction variable en liquide.

Pour le calcul du titre de la vapeur, on utilise des calorimètres à étranglement et à séparation.

Dans la pratique, les dispositifs de détermination du titre de la vapeur sont utilisés dans les centrales thermiques à vapeur, derrière les turbines à vapeur ou sur les chaudières, devant le surchauffeur.

Le banc d'essai ET 805.50 suit un procédé en deux étapes pour déterminer le titre de la vapeur.

Pour déterminer des titres de la vapeur ayant une fraction de liquide élevée, 0,5<x<0,95, on utilise un calorimètre à séparation avec un séparateur d'eau avec siphon.

La fraction de liquide est séparée, refroidie et collectée dans un bécher gradué.

Pour déterminer des titres de la vapeur compris entre x=0,95 et x=1, on utilise un calorimètre à étranglement raccordé en aval. La vapeur humide est alors détendue.

Après la détente, la fraction restante de vapeur est condensée au sein d'un condenseur refroidi par eau puis également collectée dans un récipient gradué.

Les deux données de mesure permettent de déterminer la masse de vapeur et la masse totale utilisées pour le calcul du titre de la vapeur.

Les capteurs mesurent la pression et la température avant et après la détente.

À partir des résultats de mesure, on détermine le titre de la vapeur au moyen du diagramme h.s.

La vapeur d'eau doit être produite en externe, par ex. en utilisant le générateur de vapeur électrique WL 315.02. Le ET 805.50 est recommandé pour la détermination du titre de la vapeur dans les centrales thermiques à vapeur

ET 805, ET 830, ET 850 ou ET 833.

Contenu didactique / Essais

- détermination du titre de la vapeur avec
- -- calorimètre à séparation avec un séparateur d'eau avec siphon
- -- un calorimètre à étranglement avec détente de la vapeur
- utilisation d'un diagramme h,s

Les grandes lignes

- deux possibilités différentes pour la détermination du titre de la vapeur

Les caractéristiques techniques Alimentation en vapeur

- température max.: 240°C

Date d'édition : 06.12.2025

- pression max.: 10bar

Soupape de sûreté: 10bar Plages de mesure - température: 0...400°C

- temperature: 0...400°C - pression (entrée): 0...16bar

- pression (après détente): -150...100mbar

230V, 50Hz, 1 phase

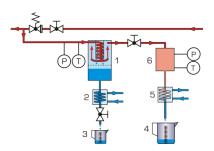
Dimensions et poids Lxlxh:: 890x800x1890mm

Poids: env. 90kg

Nécessaire au fonctionnement vapeur: max. 10bar, 240°C raccord deau, drain

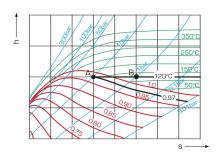
Liste de livraison 1 appareil dessai 2 récipients de mesure 1 jeu d'outils

1 documentation didactique


Accessoires disponibles et options
WI 315 02 - Génératour de vapour électrique 12kW

WL315.02 - Générateur de vapeur électrique 12kW

Catégories / Arborescence


Techniques > Génie des Procédés > Principes de base du génie des procédés > Thermodynamique

Date d'édition: 06.12.2025

Date d'édition : 06.12.2025

Options

Ref: EWTGUWL315.02

WL 315.02 Générateur de vapeur électrique 12kW (Réf. 060.31502)

Fonctionnement entièrement automatique, équipement de sécurité complet

Le générateur de vapeur à chauffage électrique WL 315.02 est homologué et non soumis à autorisation.

Il fonctionne de manière entièrement automatique.

Son temps de chauffe court avant la distribution de vapeur permet d'effectuer des essais complets en un temps bref. Un équipement de sécurité complet garantit la sécurité d'utilisation.

Les grandes lignes

- générateur de vapeur à chauffage électrique
- temps de chauffe réduit
- fonctionnement entièrement automatique

Les caractéristiques techniques

Dispositif de chauffage

- puissance de chauffe: 12,6kW

Générateur de vapeur

production de vapeur: 13kg/hpression de service: 3-7bar

- pression max.: 7bar

400V, 50Hz, 3 phases

Dimensions et poids Lxlxh: 680x690x1990mm

Poids: env. 147kg

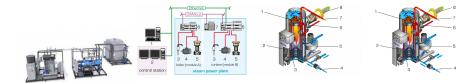
Nécessaire au fonctionnement drain

Liste de livraison

1 générateur de vapeur

1 jeu de tuyaux

1 notice



Date d'édition: 06.12.2025

Ref: EWTGUET805

ET 805 Centrale thermique à vapeur 20kW avec système de conduite de procédés (Réf.

061.80500)

Les grandes installations de procédés, comme les centrales thermiques à vapeur, sont de nos jours commandées par des systèmes de conduite de procédés.

La centrale thermique à vapeur ET 805 est spécialement conçue pour la formation et les travaux pratiques dans le domaine des centrales électriques avec systèmes de conduite de procédés.

Du fait de sa taille et de sa complexité, le comportement en service de cette centrale correspond par de nombreux aspects à celui des vraies centrales, et permet une formation proche de la pratique.

La centrale est composée de quatre modules distincts, et sadapte ainsi de manière flexible à lespace disponible dans le laboratoire:

Module A Groupe de générateur de vapeur: une chaudière au gaz / à fuel et un surchauffeur électrique en aval produisent de la vapeur chaude.

Le circuit deau dalimentation est équipé dune centrale de traitement de leau avec échangeur dions et dosage des produits chimiques.

Module B Groupe de turbine à vapeur: la vapeur chaude est conduite à une turbine industrielle à un étage avec régulation de la vitesse de rotation.

Celle-ci entraîne un générateur synchrone qui peut fonctionner, au choix, en parallèle ou en îlotage.

La vapeur qui séchappe de la turbine est condensée et reconduite dans le circuit deau dalimentation.

Module C Tour de refroidissement par voie humide: avec tirage forcé pour lutilisation en plein air.

Module D Poste de commande: des capteurs enregistrent tous les paramètres pertinents de la centrale.

Les valeurs de mesure sont transmises au système de conduite de procédés avec automate programmable industriel, ainsi quà un PC pour lacquisition de données où elles sont représentées et évaluées à laide du logiciel GUNT.

Le fonctionnement de la centrale est entièrement surveillé et commandé par le système de conduite de procédés.

La commande se fait au moyen décrans tactiles modernes sur le poste de commande.

Un système de sécurité assure, en cas détat de fonctionnement critique, la désactivation des composants concernés et lenregistrement des états de défaut.

Contenu didactique / Essais

- structure et fonctionnement dune centrale thermique à vapeur complète avec système de commande et de régulation
- mise en marche, fonctionnement, mise à larrêt, entretien et maintenance dune centrale thermique à vapeur
- commande et surveillance de la centrale au moyen dun système de conduite de procédés
- enregistrement et évaluation des principaux paramètres de fonctionnement
- entre autres, détermination de conduites dentrée et de sortie, rendements des composants et de la centrale. consommation spécifique de combustible

Les grandes lignes

- centrale thermique à vapeur complète avec système de conduite de procédés basé sur Ethernet et API
- surveillance et commande de la centrale au moyen dun poste de contrôle avec écran tactile

Les caractéristiques techniques

Chaudière

- production de vapeur max.: 600kg/h à 13bar SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 06.12.2025

- puissance thermique max.: 393kW

- consommation max. de combustible: 36,8kg/h

Surchauffeur, puissance: 32kW, 250°C

Turbine à action à 1 niveau avec roue 2C et régulation électronique de la vitesse de rotation

- puissance fournie max.: 20kW à 3600min-1

Générateur synchrone

- puissance max.: 17kVa pour 400V, 60Hz

Condenseur refroidi par eau
- puissance frigorifique: 389kW
- surface de transfert: 5,5m2
Tour de refroidissement

puissance frigorifique max.: 540kW

400V, 50Hz, 3 phases

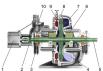
Dimensions et poids

Lxlxh: 3100x2000x2500mm (générateur de vapeur) Lxlxh: 2400x2000x2500mm (turbine à vapeur) Lxlxh: 2000x2000x2800mm (tour de refroidissement)

Poids total: env. 4500kg

Nécessaire au fonctionnement Alimentation 400 V raccord deau: 1,5m3/h, drain air comprimé: min. 8bar, 6000L/h

ventilation, évacuation des gaz déchappement


Ref: EWTGUET830

ET 830 Centrale thermique à vapeur avec alternateur 1,5kW (Réf. 061.83000)

Avec interface PC USB et logiciel inclus, nécessite ET830.01 ou ET830.02

Centrale thermique à vapeur complète à léchelle du laboratoire Circuit fermé vapeur-eau Surveillance et commande de linstallation par API

Dans les centrales thermiques à vapeur, lénergie thermique est dabord convertie en énergie mécanique et, pour finir en énergie électrique.

Une centrale thermique à vapeur est essentiellement constituée dune source de chaleur pour la production de la vapeur, dune turbine avec charge et dun dispositif de refroidissement pour la condensation de la vapeur.

LET 830 a été spécialement conçu pour la formation technique dans le domaine des centrales électriques respectivement des machines motrices et des machines réceptrices, et il permet deffectuer de nombreux essais pour se familiariser

avec les processus de fonctionnement dune centrale thermique à vapeur.

Une chaudière au fuel génère de la vapeur humide qui est ensuite transformée en vapeur chaude par un surchauffeur.

Le temps court de chauffe de la chaudière permet de produire rapidement de la vapeur.

La turbine est chargée par un générateur.

La puissance de la turbine est déterminée au moyen de la vitesse de rotation et du couple de rotation.

Au-delà de la turbine, la vapeur est condensée et reconduite dans la chaudière. SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 06.12.2025

Le circuit deau dalimentation est équipé dune centrale complète de traitement de leau, constituée dun échangeur dions régénérable ainsi que

dun dispositif de dosage des produits chimiques.

Des capteurs mesurent la température, la pression, la vitesse de rotation et le débit à tous les points significatifs.

Les valeurs mesurées peuvent être lues sur des affichages numériques.

Les valeurs sont transmises vers un PC afin dy être évaluées à laide dun logiciel fourni.

La transmission des données au PC se fait par une interface USB.

Le tableau de commande comprend un schéma de processus clair de la centrale.

La centrale est surveillée et commandée par un automate programmable industriel (API).

Linstallation dessai est conforme aux réglementations de sécurité en vigueur, et comporte les dispositifs de sécurité réglementaires.

Le générateur de vapeur est homologué et non soumis à autorisation.

Pour lalimentation en eau de refroidissement, on peut en option utiliser la centrale avec la tour de refroidissement ET 830.01 ou ET 830.02.

Contenu didactique / Essais

- centrale thermique à vapeur et ses composants
- mise en marche, fonctionnement et mise à larrêt dune centrale thermique à vapeur
- circuit fermé vapeur-eau avec traitement de leau dalimentation
- entre autres, détermination:

du rendement de la chaudière

du rendement mécanique/thermique de la turbine

du rendement du condenseur

de la consommation de combustible spécifique de la centrale

Les grandes lignes

- centrale thermique à vapeur complète à léchelle du laboratoire
- circuit fermé vapeur-eau
- surveillance et commande de linstallation par API

Les caractéristiques techniques

Générateur de vapeur

production de vapeur: 200kg/h à 11barconsommation max. de combustible: 12L/h

temps de chauffe: 8minpression max.: 13bar

Surchauffeur

- puissance: 7kW

Turbine axiale à un étage avec roue Curtis et régulateur de vitesse de rotation hydraulique

-puissance: max. 1,5kW à 3000min-1

Condenseur refroidi par eau

- puissance frigorifique: 98 kW

- surface de transfert: 2,5m2

Plages de mesure

- température: 9x 0?400°C, 2x 0?100°C

- débit: 0?167L/min (eau de refroidissement)

- pression: 3x 0?16bar, 1x ±1bar

- couple: 0?10 Nm

- vitesse de rotation: 0?4000min-1

400V, 50Hz, 3 phases

Date d'édition : 06.12.2025

Dimensions et poids

Lxlxh: 3500x2000x2450mm

Poids: env. 1950kg

Nécessaire pour le fonctionnement eau de refroidissement 10m3/h, drain ou ET 830.01/ET 830.02

raccord d

Ref: EWTGUET850

ET 850 Générateur de vapeur pour vapeur surchauffée, avec condenseur (Réf. 061.85000)

Avec interface PC USB et logiciel inclus

De la vapeur d'eau se forme dans un générateur de vapeur, qui sera utilisée par la suite pour alimenter des turbines à vapeur ou pour le chauffage.

Générateur de vapeur et consommateur de vapeur forment ensemble ce que l'on appelle une centrale thermique à vapeur.

Les centrales thermiques à vapeur fonctionnent selon le cycle de Clausius-Rankine, qui fait partie encore aujourd'hui des cycles industriels les plus courants.

Des centrales thermiques à vapeur sont principalement utilisées pour la génération de courant.

Associé à la turbine à vapeur axiale ET 851, le générateur à vapeur ET 850 forme une centrale thermique à vapeur complète à l'échelle du laboratoire.

Avec le banc d'essai ET 850, les étudiants apprennent à connaître les composants et le principe de fonctionnement d'un générateur de vapeur et peuvent étudier les valeurs caractéristiques de l'installation. Les dispositifs de sécurité variés du générateur de vapeur peuvent être testés et contrôlés au moyen de divers dispositifs de surveillance.

Dans le cas où le générateur de vapeur fonctionne sans turbine à vapeur, la vapeur produite est condensée directement au moyen d'un condenseur et retournée via un réservoir dans le circuit d'évaporation.

Étant donné que tous les composants sont agencés de manière claire sur le panneau avant, le cycle est facile à suivre et à comprendre.

Des capteurs enregistrent la température, la pression et le débit à tous les points pertinents.

Les valeurs mesurées peuvent être lues sur des affichages numériques.

Les valeurs sont transmises à un PC afin dy être évaluées à laide du logiciel fourni.

La transmission des données au PC se fait par une interface USB.

Le générateur de vapeur est construit selon les TRD (règles techniques allemandes relatives aux chaudières à vapeur); il a été testé sous pression et est équipé de toutes les robinetteries de sécurité prescrites par la

La documentation didactique bien structurée expose les principes de base et guide létudiant dans la réalisation des essais.

Contenu didactique / Essais

- découverte et étude des caractéristiques spécifiques d'une chaudière
- rendement d'un générateur de vapeur
- analyse des gaz d'échappement
- effet de différents ajustages du brûleur
- température et pression de saturation de la vapeur
- enthalpie de la vapeur
- détermination de la densité de flux de chaleur et du coefficient de transfert de chaleur

Les grandes lignes

Date d'édition: 06.12.2025

- Générateur de vapeur à l'échelle du laboratoire pour vapeur humide ou surchauffée
- Valeurs caractéristiques d'une chaudière
- Dispositifs de sécurité et de surveillance divers
- Construction d'une centrale thermique à vapeur complète en association avec la turbine à vapeur ET 851

Les caracteristiques techniques

Brûleur

- puissance de chauffe: 8kW

Plages de mesure

- température : 0...400°C

- pression

condenseur: 0...1,6bar abs. vapeur fraîche: 0...16bar

- puissance surchauffeur: 0...750W

- débit

gaz: 0...14L/min

eau de refroidissement: 0...720L/h eau d'alimentation: 0...15L/h

Dimensions et poids Lxlxh: 1830x790x1770mm (sans évacuation de fumées)

Poids: env. 280kg

Necessaire au fonctionnement 230V, 50/60Hz, 1 phase ou 120V, 60Hz, 1 phase Alimentation en gaz (propane)): 700g/h, 50mbar

Raccord deau: 720L/h, 2bar, drain

Ventilation et évacuation des gaz déchappement requises

Liste de livraison

1 banc dessai

1 CD avec logiciel GUNT + câble USB

1 appareil d'analyse des fumées

20L d'eau distillée

1 jeu doutils

1 documentation didactique

Accessoires disponibles et options

ET805.50 - Détermination du titre de la vapeur

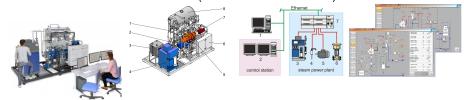
ET851 - Turbine à vapeur axiale

Produits alternatifs

ET810 - Centrale thermique à vapeur avec machine à vapeur

ET813.01 - Générateur de vapeur électrique

ET830 - Centrale thermique à vapeur 1,5kW



Date d'édition: 06.12.2025

Ref: EWTGUET833

ET 833 Centrale thermique à vapeur, alternateur 1,5kW avec système de conduite de procédés (Réf. 061

Nécessite Tour de refroidissement (ET 833.01 ou ET 833.02)

Centrale thermique à vapeur complète à léchelle du laboratoire Système de conduite de procédés basé sur Ethernet et API

Surveillance et commande de la centrale au moyen dun poste de commande avec écran tactile

Les grandes installations de procédés, comme les centrales thermiques à vapeur, sont de nos jours commandées par des systèmes de conduite de procédés (SCP).

Le système de conduite de procédés surveille toute la centrale, régule et commande les différents acteurs, et enregistre et affiche les valeurs de mesure.

La centrale thermique à vapeur ET 833 est spécialement conçue pour la formation et les travaux pratiques dans le domaine des centrales électriques avec systèmes de conduite de procédés.

Le haut niveau de complexité assure une grande similitude avec les centrales électriques réelles.

Une chaudière à fuel et un surchauffeur électrique en aval produisent de la vapeur chaude pour la turbine industrielle à un niveau, chargée par un générateur de courant alternatif.

Lénergie produite réalimente le réseau.

La vapeur qui sévacue de la turbine est condensée et reconduite dans la chaudière.

Le circuit deau dalimentation est équipé dune centrale de traitement de leau complète avec échangeur dions et dosage des produits chimiques.

Les capteurs détectent tous les paramètres pertinents.

Les valeurs de mesure sont transmises au système de conduite de procédés avec automate programmable industriel, ainsi quà un PC pour lacquisition de données où elles sont représentées et évaluées à laide du logiciel GUNT.

Le fonctionnement de la centrale est entièrement surveillé et commandé par le système de conduite de procédés.

En cas de besoin, le système de conduite de procédés envoie une régulation aux acteurs concernés.

La commande se fait au moyen décrans tactiles modernes sur le poste de commande.

Un système de sécurité assure, en cas détat de fonctionnement critique, la désactivation des composants concernés et lenregistrement des états de défaut.

Linstallation dessai est conforme aux réglementations de sécurité en vigueur, et comporte les dispositifs de sécurité réglementaires.

Le générateur de vapeur est homologué et non soumis à autorisation.

Pour lalimentation en eau de refroidissement, on peut en option utiliser la centrale avec la tour de refroidissement ET 833.01 ou ET 833.02.

Contenu didactique/essais

- installation motrice à vapeur et ses composants avec système de commande et de régulation
- mise en marche, fonctionnement et mise à larrêt dune centrale thermique à vapeur
- familiarisation avec la commande et la surveillance de linstallation au moyen dun système de conduite de procédés

- opérations de surveillance, dentretien et de maintenance SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 06.12.2025

- entre autres, détermination de: conduites dentrée et de sortie, rendements des composants et de linstallation, consommation spécifique de combustible de la centrale

Les grandes lignes

- centrale thermique à vapeur complète à léchelle du laboratoire
- système de conduite de procédés basé sur Ethernet et API
- surveillance et commande de la centrale au moyen dun poste de commande avec écran tactile

Caractéristiques techniques

Générateur de vapeur

- production de vapeur: 200kg/h à 11bar
- consommation max. de combustible: 12L/h
- temps de chauffe: 8min - pression max.: 13bar

Surchauffeur

- puissance 7kW

Turbine axiale à un étage avec roue Curtis et régulateur de vitesse de rotation hydraulique

- puissance: max. 1,5kW à 3000min-1

Condenseur refroidi par eau

puissance frigorifique: 98kWsurface de transfert: 2,5m2

Plages de mesure

température: 12x -50?400°C, 1x 0?100°C
débit: 0?167L/min (eau de refroidissement)
pression: 3x 0?16bar, 2x 0?4bar, 1x -1?1bar