

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 07.11.2025

Ref: EWTGUET270

ET 270 Centrale houlomotrice avec turbine de Wells (Réf. 061.27000)

Générateur de houle dans un canal hydraulique

Les centrales houlomotrices exploitent l'énergie des mouvements continus de la houle pour produire de l'électricité de manière écologique.

Le long des côtes, les centrales houlomotrices peuvent alimenter en énergie électrique en particulier les sites isolés.

D'un point de vue technique, elles sont faciles à intégrer dans des môles, des jetées ou des ouvrages de protection côtiers.

ET 270 est une installation houlomotrice à l'échelle du laboratoire constituée d'un générateur de houle, d'un canal à houle ainsi que d'une centrale houlomotrice avec unité de turbine.

Pour produire de la houle dans le canal à houle, on déplace de bas en haut un corps déplaceur au moyen d'une manivelle ajustable.

La course permet de varier la hauteur de la houle.

La vitesse de rotation du moteur permet d'ajuster la fréquence de la houle.

Une tôle de guidage située à l'extrémité du canal à houle conduit la houle en direction de la centrale houlomotrice.

La centrale houlomotrice se compose d'une chambre et d'une unité de turbine.

Le mouvement continu et dirigé de la houle produit une colonne d'eau oscillante à l'intérieur de la chambre, qui met en mouvement la masse d'air située au-dessus. L'écoulement d'air ainsi produit entraîne la turbine, qui est de type Wells.

En ce qui concerne l'écoulement incident, les turbines Wells travaillent indépendamment de la direction: l'énergie d'écoulement est transformée avec un mouvement d'air aussi bien ascendant que descendant.

Un moteur à courant continu raccordé à la turbine permet de la faire démarrer.

Lorsqu'une certaine vitesse de consigne est atteinte, il fonctionne en tant que génératrice et produit de l'électricité.

Le niveau d'eau et donc la hauteur de la houle peuvent être mesurés le long du canal à houle au moyen d'un capteur à ultrasons mobile.

Un second capteur à ultrasons situé à l'intérieur de la chambre permet de mesurer le mouvement de la colonne d'eau.

On détermine la vitesse d'écoulement du mouvement d'air par le biais de points de mesure de la pression situés dans le carter de la turbine.

Les valeurs mesurées peuvent être lues sur des affichages numériques.

Les valeurs sont transmises vers un PC afin dy être évaluées à laide dun logiciel fourni.

La transmission des données au PC se fait par une interface USB.

La documentation didactique bien structurée expose les principes de base et guide létudiant dans la réalisation des essais.

Contenu didactique / Essais

- se familiariser avec le principe d'une centrale houlomotrice

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 07.11.2025

- comprendre l'exploitation de l'énergie issue des mouvements de la houle
- mesurer les mouvements de la houle
- se familiariser avec la construction et le fonctionnement de la turbine Wells
- optimiser le comportement en service

Les grandes lignes

- Générateur de houle configurable
- Unité de turbine avec turbine Wells et génératrice
- Logiciel GUNT pour la commande, l'acquisition des données et l'évaluation des résultats de mesure

Les caracteristiques techniques

Générateur de houle

- puissance: 550W

- volume de déplacement: 26,5L

Canal à houle:

- Lxlxh: 5000x300x600mm

Turbine Wells

- puissance: 0...1000mW

- vitesse de rotation: 0...6000min^-1^

- rotor: 6 aubes

- diamètre extérieur: 120mm, intérieur: 80mm

Plages de mesure

- hauteur de la houle: 0...340mm

niveau à l'intérieur de la chambre: 0...900mm
pression à l'intérieur de la chambre: -5...5mbar
vitesse de rotation de la turbine: 0...6000min^-1^

- intensité: -1000mA...1000mA

Dimensions et poids Lxlxh: 5850x700x2050mm

Poids: env. 500kg

Necessaire au fonctionnement

230V, 50/60Hz, 1 phase ou 120V, 60Hz, 1 phase

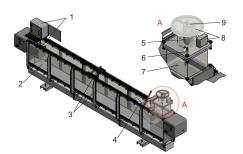
Liste de livraison

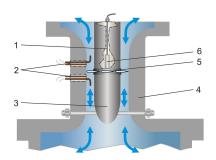
1 installation d'essai

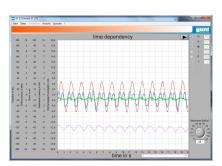
1 jeu d'accessoires

1 documentation didactique

Catégories / Arborescence


Techniques > Energie Environnement > Hydraulique - Eolien > Énergie hydraulique


Techniques > Mécanique des fluides > Principe de la dynamique des fluides > Écoulement dans des canaux à surface libre



Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 07.11.2025

