

Date d'édition: 05.12.2025

Ref: EWTGUET202.01

ET 202.01 Capteur cylindro-parabolique pour ET 202 (Réf. 061.20201)

Les capteurs cylindro-paraboliques contiennent des surfaces de miroir de forme parabolique permettant la réflexion et la concentration du rayonnement solaire sur un absorbeur.

Un liquide caloporteur circule dans le tube absorbeur au centre du canal parabolique et transporte la chaleur absorbée pour son exploitation ultérieure.

LET 202.01 et le banc dessai ET 202 permettent détudier les aspects fondamentaux de lexploitation de lénergie solaire thermique à concentration.

La lumière de lunité déclairage de IET 202 est focalisée sur le tube absorbeur à laide du miroir parabolique.

Afin de réduire les pertes de chaleur, le tube absorbeur est équipé dune enveloppe en verre à double paroi.

La chaleur est transférée par le biais dune conduite de labsorbeur sur un liquide caloporteur à lintérieur du circuit solaire du banc dessai ET 202, où elle entre dans le réservoir.

Dans le cadre des essais, il est possible de comparer directement le comportement par rapport à la température et le rendement du capteur cylindro-parabolique avec un capteur plan classique.

La distance qui sépare IET 202 de lunité déclairage et langle dinclinaison peuvent être modifiés.

Lenregistrement, laffichage et lévaluation des données de mesure sont effectués à laide du logiciel GUNT dans IET 202.

Contenu didactique / Essais

- focalisation du rayonnement solaire avec un miroir cylindrique
- facteur de concentration optique
- conversion de lénergie de rayonnement en chaleur
- pertes dans les capteurs solaires thermiques
- caractéristiques du rendement

Les grandes lignes

- capteur cylindro-parabolique pivotant avec miroir hautement réfléchissant
- tube absorbeur avec revêtement sélectif
- tube en verre à double paroi sous vide pour la réduction des pertes de chaleur

Les caractéristiques techniques

Capteur

- miroir parabolique

longueur du canal: 415cm largeur douverture: 415cm surface du miroir: 0,17m2 longueur focale: 0,1m

- absorbeur

tube absorbeur à revêtement sélectif

enveloppe en verre à double paroi pour la réduction des pertes de chaleur

Dimensions et poids Lxlxh: 546x420x155mm Poids: env. 16kg

Nécessaire au fonctionnement PC avec Windows recommandé

Liste de livraison 1 appareil dessai

1 documentation didactique

Date d'édition: 05.12.2025

Accessoires requis

ET 202 Principes de l'énergie solaire thermique

Produits alternatifs

ET 203 Capteur cylindro-parabolique avec suivi du soleil

Options

Ref: EWTGUET202

ET 202 Banc capteur solaire thermique, 2 collecteurs, source artificielle, ballon (Réf. 061.20200)

Avec interface PC USB et logiciel inclus

Les installations héliothermiques transforment l'énergie solaire en chaleur utile.

ET 202 vous présente le principe du réchauffement héliothermique des eaux industrielles.

En simulant le rayonnement solaire naturel dans un module d'éclairage, il est possible d'exécuter des séries de test sans faire face aux intempéries.

La lumière est transformée en chaleur dans un absorbeur puis transmise à un liquide caloporteur.

Une pompe assure le transport du liquide caloporteur dans un réservoir d'eau chaude.

Dans le réservoir, la chaleur est libérée dans l'eau par un échangeur thermique intégré.

Le banc d'essai ET 202 permet d'étudier différents angles de rayonnement et éclairements.

Pour effectuer des mesures comparatives des pertes du capteur solaire, l'absorbeur proposé avec un revêtement sélectif peut être remplacé par un absorbeur noirci plus simple.

Le banc d'essai prévoit deux connecteurs pour le raccordement de consommateurs d'eau externes.

Le banc d'essai est équipé de capteurs pour enregistrer les températures importantes (entrée et sortie du capteur solaire, air environnement et réservoir) et l'éclairement.

Les valeurs mesurées sont affichées sur un appareil et peuvent être transmises simultanément à un PC par liaison USB.

Les données du logiciel fourni avec l'appareil sont représentées clairement sur le PC, en vue d'un traitement ultérieur.

Contenu didactique / Essais

- comprendre et connaître la structure et le fonctionnement d'une installation héliothermique simple
- détermination de la puissance utile
- bilan énergétique du capteur solaire
- influence de l'éclairement, de l'angle de rayonnement et du débit
- détermination des caractéristiques du rendement
- influence de différentes surfaces d'absorbeurs

Les grandes lignes

- modèle d'une installation héliothermique
- module d'éclairage pour ne pas dépendre des intempéries
- réservoir d'eau chaude avec chauffage électrique
- capteur solaire à plan inclinable avec absorbeurs interchangeables

Date d'édition : 05.12.2025

Les caractéristiques techniques Capteur solaire plan

- surface d'absorption: 320x330mm

- angle d'inclinaison: 0...60°

Module d'éclairage

- panneau de lampes: 25x 50W

Pompe

- débit réglable: 0...24L/h

Plages de mesure

- température: 4x 0...100°C

- débit: 0...30L/h

- éclairement: 0...3kW/m^2^

Alimentation

230V, 50Hz, 1 phase

Dimensions et poids

Lxlxh: 1840x800x1500mm

Poids: env. 167kg

Nécessaire au fonctionnement PC avec Windows recommandé

Liste de livraison

1 banc d'essai

1 bécher de mesure

1 absorbeur

1 CD avec logiciel GUNT + câble USB

1 documentation didactique

Accessoires en option pour l'apprentissage à distance GU 100 Web Access Box avec

ET 202W Web Access Software

Produits alternatifs

HL313 - Échauffement d'eau industrielle avec capteur plan

Date d'édition: 05.12.2025

Ref: EWTGUET203

ET 203 Capteur cylindro-parabolique avec suivi du soleil (Réf. 061.20300)

Avec interface PC USB et logiciel inclus

Les capteurs cylindro-paraboliques sont constitués de surfaces miroirs de forme parabolique dans lesquelles le rayonnement solaire est collecté et concentré dans un absorbeur.

Un liquide caloporteur circule dans le tube absorbeur, transportant la chaleur vers sa destination.

Avec IET 203, les aspects essentiels de lexploitation de lénergie solaire thermique sont étudiés sur un capteur cylindro-parabolique.

À cet effet, le rayonnement solaire est concentré par un miroir parabolique sur un tube absorbeur.

Lénergie de rayonnement est absorbée et transformée en chaleur.

Pour réduire les pertes de chaleur, le tube absorbeur est équipé dune enveloppe en verre à double paroi.

La chaleur est transmise à un liquide caloporteur dans le circuit solaire via une conduite se trouvant dans labsorbeur.

La chaleur est transférée au circuit deau chaude et au réservoir de stockage via un échangeur de chaleur à plaques.

Le capteur cylindro-parabolique peut être orienté en fonction de la position du soleil grâce à deux motoréducteurs.

On a ici deux possibilités de commande: soit en fonction de données astronomiques calculées, soit par lintermédiaire de capteurs.

Le circuit solaire est protégé par un vase dexpansion et une soupape de sécurité.

Les températures dans le réservoir, à la sortie et à lentrée du capteur ainsi que le débit dans le circuit solaire sont enregistrés.

Lutilisation et la commande se font par IAPI et lécran tactile.

Grâce à un routeur intégré, le banc dessai peut être alternativement commandé et exploité par un dispositif terminal

Linterface utilisateur peut également être affichée sur des terminaux supplémentaires (screen mirroring).

Via IAPI, les valeurs de mesure peuvent être enregistrées en interne.

Laccès aux valeurs de mesure enregistrées est possible à partir des terminaux via WLAN avec routeur intégré/connexion LAN au réseau propre au client.

Via connexion LAN directe, les valeurs de mesure peuvent également être transmises à un PC afin dy être exploitées à laide du logiciel GUNT.

Le capteur est suspendu de manière à pouvoir pivoter et peut être orienté à la verticale pour les essais avec la source de lumière artificielle HL 313.01.

Des roulettes et supports mobiles permettent de positionner le banc dessai à un endroit approprié à lextérieur.

Contenu didactique / Essais

- concentration du rayonnement solaire avec un miroir en forme dauge parabolique
- facteur de concentration optique
- DNI: Direct Normal Irradiance
- suivi au soleil basée sur des capteurs
- suivi au soleil en fonction des données astronomiques
- conversion de lénergie de rayonnement en chaleur
- pertes dans les capteurs solaires thermiques
- caractéristiques du rendement

Les grandes lignes

- capteur cylindro-parabolique mobile avec orientation motorisée sur deux axes
- le suivi solaire astronomique et par capteurs
- un routeur intégré pour lexploitation et le contrôle via un dispositif terminal et pour le screen mirroring sur des SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition : 05.12.2025

terminaux supplémentaires: PC, tablette, smartphone

Les caracteristiques techniques

API: Eaton XV-303

Capteur

- miroir parabolique longueur de lauge: 1,4m largeur douverture: 1,1m surface de miroir: 1,5m2 longueur focale: 0,3m

- absorbeur

tube absorbeur à revêtement sélectif avec tube en U pour le liquide caloporteur enveloppe en verre à double paroi pour réduire les pertes de chaleur

- circuit solaire

pompe solaire: ajustable Circuit deau chaude

- échangeur de chaleur à plaques: 3kW, 10 plaques

- réservoir daccumulation: 70L

Plages de mesure - débit: 20?320L/h

- température: 4x 0?160°C

- pression: 0?6bar

230V, 50Hz

Dimensions et poids

Lxlxh: 1960x800x1900mm; Poids: env. 290kg

Nécessaire pour le fonctionnement PC avec Windows recommandé

Liste de livraison banc dessai, logiciel GUNT, documentation didactique

Accessoires en option HL 313.01 Source lumineuse artifici