

Date d'édition: 17.12.2025

Ref: 554791

Cristal de KBr pour la réflexion de Bragg

Convient pour le goniomètre de l'appareil à rayons X (554 801).

Pour des expériences avec une disposition répondant à la condition de Bragg, par ex. diffraction (jusqu'au 6 ème ordre), spectres de rayons X, détermination de la longueur d'ondes, loi de Duane et Hunt, détermination de la constante de Planck, influence de la longueur d'onde sur l'absorption, détermination de l'écartement des plans réticulaires.

Caractéristiques techniques :

Écartement des plans réticulaires : 330 pm

Angle de réflexion pour le rayonnement K a du molybdène (1 er ordre): 6,2°

Structure cristalline : cubique à faces centrées

Surface : parallèle [100]

Dimensions: 25 mm x 25 mm x 4 mm

Options

Ref: 554800

Appareil de base à rayons X

Appareil de base livré sans tube et sans goniomètre. (554831)

Appareil de base, ajusté et prêt à l'emploi pour tous les tubes Molybdène (554 861) Cuivre (554 862) Fer (554 863) Tungstène (554 864) Argent (554 865), mais livré sans tube et sans goniomètre (554 831).

Caractéristiques techniques :

voir 554 801

Caractéristiques techniques :

Dispositif à rayons X pour l'enseignement et appareil à protection totale avec l'homologation BFS 05/07 V/Sch RöV (permet l'utilisation avec des tubes interchangeables au Fe. Cu. Mo. Ag, W, Au) SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 17.12.2025

Taux de dose à une distance de 10 cm : < 1 µS/h

Respectivement deux circuits de sécurité indépendants et surveillés pour les portes, la haute tension et le courant du tube (certifié par le TÜV Rheinland et conforme aux exigences pour les essais de type PTB 2005)

Verrouillage automatique de la porte : l'ouverture est seulement possible lorsque plus aucun rayonnement X n'est généré (certifié par le TÜV Rheinland et conforme aux exigences pour les essais de type PTB 2005)

Haute tension du tube : 0 ... 35,0 kV (tension continue régulée)

Courant du tube : 0 ... 1,00 mA (courant continu régulé de manière indépendante)

Tube à rayons X visible avec anode au molybdène pour un rayonnement caractéristique à ondes courtes : Ka = 17.4 keV (71.0 pm), KB = 19.6 keV (63.1 pm)

Ecran luminescent pour des expériences de radiographie : d = 15 cm

Indicateur de valeur moyenne intégré, avec l'alimentation en tension pour le compteur de Geiger-Müller

Haut-parleur : activable pour le suivi acoustique du taux de comptage

Deux affichages à 4 chiffres (25 mm de haut) pour la visualisation au choix des valeurs actuelles de la haute tension, du courant anodique, du taux de comptage, de l'angle de la cible ou du capteur, du domaine de balayage, du pas de progression, du temps de porte

Réalisation des essais dans la partie expérimentation : câble coaxial haute tension, câble coaxial BNC, canal vide, par ex. pour des tuyaux, câbles, etc.

Sorties analogiques : proportionnellement à l'angle de la cible et au taux de comptage pour la connexion de l'enregistreur

Port USB pour le branchement du PC pour l'acquisition des données, la commande et l'exploitation de l'expérience, par ex. à l'aide du logiciel Windows fourni

Pilotes LabView et MATLAB pour Windows disponibles gratuitement sous http://www.ld-didactic.com pour ses propres mesures et commandes

Tension d'entrée : 230 V ±10 % / 47 ... 63 Hz

Consommation: 120 VA

Dimensions: 67 cm x 48 cm x 35 cm

Masse: 41 kg

Matériel livré : Appareil de base Plaque de protection pour l'écran Housse de protection Câble USB

Logiciel CASSY LAB 2 pour machine à rayon X pour Windows 2000/XP/Vista/7/8/10 (524 223)

Liste des TP pouvant être réalisés:

P6.3.1.1 Fluorescence d'un écran luminescent par rayons X

P6.3.1.3 Mise en évidence de rayons X avec une chambre d'ionisation

P6.3.1.4 Détermination du débit de dose ionique de tubes à rayons X avec anode en molybdène

P6.3.1.5 Etude d'un modèle d'implantation (en)

P6.3.1.6 Influence d'un agent contrasté sur l'absorption de rayons X (en)

P6.3.2.1 Étude de l'atténuation de rayons X en fonction du matériau d'absorption et de l'épaisseur d'absorption

P6.3.2.2 Etude du coefficient d'atténuation en fonction de la longueur d'onde

P6.3.2.3 Etude du coefficient d'atténuation en fonction du nombre atomique Z

P6.3.5.1 Enregistrement et calibrage d'un spectre d'énergie de rayons X

P6.3.5.2 Enregistrement du spectre d'énergie d'une anode en molybdène

P6.3.5.3 Enregistrement du spectre d'énergie d'une anode en cuivre

P6.3.5.4 Étude de spectres caractéristiques en fonction du numéro atomique de l'élément : les raies K

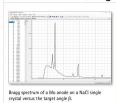
P6.3.5.5 Etude de spectres caractéristiques en fonction du numéro atomique de l'élément : Les couches L

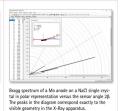
P6.3.5.6 Réflexion de Bragg dissoute par l'énergie à différents ordres de diffraction

P6.3.6.1 Structure fine du faisceau du rayon X caractéristique d'une anode en molybdène

P6.3.6.11 Structure fine à haute résolution des rayons X caractéristiques d'une anode en molybdène

P6.3.6.12 Structure fine




Date d'édition: 17.12.2025

Ref: 554801

Appareil à rayons X Mo, complet / Avec : Tube de molybdène, Goniomètre (554831), Cristal NaCl (55478), Film de Zircon, Logiciel, Câble USB, Housse, Plaque de protection

Appareil complet commandé par microprocesseur avec tube de Mo et goniomètre pour la réalisation de nombreuses expériences du domaine de la physique des rayons X.

Une partie génération de haute tension, un tube à rayons X et une partie expérimentation sont regroupés dans un boîtier parfaitement clos et protégés contre les rayonnements.

L'appareil est homologué comme dispositif à rayons X pour l'enseignement et appareil à protection totale.

L'homologation est également valable pour d'autres tubes (Fe, Cu, Ag, W, Au) livrés ajustés, prêts à l'emploi, en vue d'un changement aisé.

Une sécurité optimale et un grand confort d'utilisation sont garantis par un système de verrouillage qui déverrouille automatiquement les portes lorsque plus aucun rayonnement X n'est généré.

Deux grands affichages donnent des informations exhaustives sur l'expérience en cours.

La tension et le courant du tube sont réglables respectivement de 0 à 35 kV et de 0 à 1 mA.

Utilisé avec l'indicateur de valeur moyenne intégré, l'appareil à rayons X permet la mesure directe avec un tube compteur Geiger-Müller (559 01).

Pour relever des spectres de Bragg, il suffit de le brancher à un PC (logiciel inclus au matériel livré) via un port USB.

Une alternative consiste à recourir aux deux sorties analogiques (taux de comptage et position angulaire) qui permettent, quant à elles, d'enregistrer les données avec un enregistreur.

Le goniomètre (554 831) permet d'adopter manuellement les diverses positions angulaires prévues pour le capteur et la cible ; le capteur et la cible couplés dans un rapport 2 : 1 peuvent également être déplacés manuellement ou pour le balayage automatique d'un domaine angulaire.

La partie expérimentation est accessible par l'intermédiaire de deux conduites coaxiales blindées ainsi que par un canal libre, par ex. pour la connexion d'un détecteur d'énergie de rayonnement X entraîné par un goniomètre. L'appareil est assemblé et ajusté, prêt à l'emploi.

Caractéristiques techniques :

Dispositif à rayons X pour l'enseignement et appareil à protection totale avec l'homologation BFS 05/07 V/Sch RöV (permet l'utilisation avec des tubes interchangeables au Fe, Cu, Mo, Ag, W, Au)

Taux de dose à une distance de 10 cm : < 1 μS/h

Respectivement deux circuits de sécurité indépendants et surveillés pour les portes, la haute tension et le courant du tube (certifié par le TÜV Rheinland et conforme aux exigences pour les essais de type PTB 2005)

Verrouillage automatique de la porte : l'ouverture est seulement possible lorsque plus aucun rayonnement X n'est généré (certifié par le TÜV Rheinland et conforme aux exigences pour les essais de type PTB 2005)

Haute tension du tube : 0 ... 35,0 kV (tension continue régulée)

Courant du tube : 0 ... 1,00 mA (courant continu régulé de manière indépendante)

Tube à rayons X visible avec anode au molybdène pour un rayonnement caractéristique à ondes courtes : K a = 17.4 keV (71.0 pm), K Ω = 19.6 keV (63.1 pm)

Écran luminescent pour des expériences de radiographie : d = 15 cm

Indicateur de valeur moyenne intégré, avec l'alimentation en tension pour le compteur de Geiger-Müller

Haut-parleur : activable pour le suivi acoustique du taux de comptage

Deux affichages à 4 chiffres (25 mm de haut) pour la visualisation au choix des valeurs actuelles de la haute tension, du courant anodique, du taux de comptage, de l'angle de la cible ou du capteur, du domaine de balayage, du pas de progression, du temps de porte

Goniomètre (554 831) commandé par moteur pas à pas Modes de fonctionnement : réglage manuel et balayage automatique pour le capteur seul, la cible seule, couplage 2 : 1 Plage angulaire : illimitée (de 0° à 360°) pour la cible, de -10° à +170° pour le capteur Pas de progression : 0,1° SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 17.12.2025

Minuterie d'exposition, temps de porte : 0,5 s ... 9999 s

Réalisation des essais dans la partie expérimentation : câble coaxial haute tension, câble coaxial BNC, canal vide, par ex. pour des tuyaux, câbles, etc.

Sorties analogiques : proportionnellement à l'angle de la cible et au taux de comptage pour la connexion de l'enregistreur

Port USB pour le branchement du PC pour l'